Collision energy dependence of source sizes for primary and secondary pions at NICA energies

Alejandro Ayala
Instituto de Ciencias Nucleares,
Universidad Nacional Autónoma de México

In collaboration with S. Bernal, I. Domínguez, I. Maldonado and M.E. Tejeda-Yeomans

52nd International Symposium on Multiparticle Dynamics August 21st, 2023

Contents

■ Introduction: Meaning of the two-particle correlation function

- Source sizes and correlation strength

■ Core - halo picture: direct vs. resonance decay pions
■ UrQMD + CRAB afterburner with and without momentum resolution smearing

- Conclusions and outlook

The two-particle correlation function

$$
C_{2}\left(p_{1}, p_{2}\right)=\frac{N_{2}\left(p_{1}, p_{2}\right)}{N_{1}\left(p_{1}\right) N_{1}\left(p_{2}\right)}
$$

where

$$
N_{1}\left(p_{1}\right), N_{1}\left(p_{2}\right) \text { and } N_{2}\left(p_{1}, p_{2}\right)
$$

are the one- and two-particle invariant momentum distributions as functions of the single particle four-momenta p_{1} and p_{2}. The two-particle correlation analysis is performed as a function of the relative four-momentum q for a fixed average four-momentum K

$$
q=p_{1}-p_{2}=\left(q_{o}, \vec{q}\right), \quad K=\frac{p_{1}+p_{2}}{2}=\left(k_{0}, \vec{k}\right)
$$

Origin of two-particle correlations

■ Mainly Bose-Einstein quantum statistics for identical particles
■ Conservation laws

- Collective flow
- Jets

■ Resonance decays

Bose-Einstein quantum statistics for identical particles

Two-pion correlation and space-time source

Neglecting dynamical correlations, the pair momentum distribution is related to the particle emitting source $S(x, p)$ by

$$
N_{2}\left(p_{1}, p_{2}\right)=\int d^{4} x_{1} d^{4} x_{2} S\left(x_{1}, p_{1}\right) S\left(x_{2}, p_{2}\right)\left|\Psi_{p_{1}, p_{2}}\left(x_{1}, x_{2}\right)\right|^{2}
$$

where $\Psi_{p_{1}, p_{2}}\left(x_{1}, x_{2}\right)$ is the symmetrized pair wave function.

$$
C_{2}\left(p_{1}, p_{2}\right)=1+\operatorname{Re}\left[\frac{\widetilde{S}\left(q, p_{1}\right) \widetilde{S}^{*}\left(q, p_{2}\right)}{\widetilde{S}\left(0, p_{1}\right) \widetilde{S}^{*}\left(0, p_{2}\right)}\right]
$$

where \widetilde{S} is the Fourier Transform of S.

Two-pion correlation and space-time source

For typical sources and kinematical domains found in heavy-ion collisions the function $S(q, p)$ does not change much as a function of \mathbf{p}. It is thus customary to use the approximation $p_{1} \simeq p_{2} \simeq K$ to get

$$
C_{2}(q, K)=1+\frac{|\widetilde{S}(q, K)|^{2}}{|\widetilde{S}(0, K)|^{2}}
$$

The space region of particle emission is sometimes parametrized in a Gaussian form

$$
S(R, r)=\frac{1}{(2 \pi)^{3}} \int d^{3} q e^{i \vec{q} \cdot \vec{r}} e^{-\frac{1}{2}\left|\vec{q} R^{2} \vec{q}\right|}
$$

Source size

- \mathbf{R}^{2} is the matrix of homogeneity lengths or femtoscopy radii
- For a spherically symmetric source the radius is given by the width of the correlation function

$$
R \sim \frac{1}{q}
$$

- This is a direct consequence of Heisenberg's uncertainty relation $(\Delta R)(\Delta p) \sim 1$
- Correlated pairs are emitted predominantly in the same direction.

Correlation width

Correlation strength

■ Neglecting final state (Coulomb, strong) interactions, the correlation function $C_{2}(0, K)=2$

- Experimentally, limitations on two track resolution prevents correlation measurements at $q=0$
- The correlation function is measured at $q \neq 0$ and then extrapolated to $q=0$
- The extrapolated value can in general be different from the exact value at $q=0$
- To quantify this value, define

$$
\lambda(K)=\lim _{q \rightarrow 0} C_{2}(q, K)-1
$$

$\lambda(K)$ is also known as the chaoticity parameter

Resolution

■ For a totally chaotic source, $\lambda=1$

- Partially coherent sources (possible contributions of a Bose-Einstein condensate) produce $\lambda<1$

Even if the source is completely chaotic, since $R \sim 1 / q$ maximum radius that can be resolved $R_{\max } \sim 1 / q_{\min } \sim 25-30 \mathrm{fm}$

Resolution

Core halo picture

Correlation strength

■ Physical assumption: the phase space emitting source is made of two components

$$
S=S_{\text {core }}+S_{\text {halo }}
$$

- If the pions are correlated and their correlation function is resolved, both pions need to come from the core
- Each component has a Fourier Transform

$$
\begin{aligned}
\tilde{S}_{\text {core }}(q, K) & \equiv \int d^{4} x e^{i q x} S_{\text {core }}(x, K) \\
\widetilde{S}_{\text {halo }}(q, K) & \equiv \int d^{4} x e^{i q x} S_{\text {halo }}(x, K)
\end{aligned}
$$

Correlation strength

Thus, the correlation function can be expressed as

$$
C_{2}(q, K)=1+\left(\frac{N_{\text {core }}(K)}{N_{\text {core }}(K)+N_{\text {halo }}(K)}\right)^{2} \frac{\left|\tilde{S}_{\text {core }}(q, K)\right|^{2}}{\left|\tilde{S}_{\text {core }}(0, K)\right|^{2}}
$$

Therefore, in the core-halo picture

$$
\lambda=\left(\frac{N_{\text {core }}(K)}{N_{\text {core }}(K)+N_{\text {halo }}(K)}\right)^{2}
$$

λ carries indirect information on the decay of long-lived resonances $\left(\eta, \eta^{\prime}\right.$, $\left.\omega, K_{s}^{0}\right)$.

Possible effects on λ measurements

- Single-track momentum resolution produces smearing of the correlation function
- Track miss-identification decreases the maximum of the correlation.

■ Track merging produces a lack of data at low q and has a strong effect for $k_{T}>0.6 \mathrm{GeV} / \mathrm{c}$.

- Two-track effects, such as track splitting, can be corrected by increasing the number of hits for track selection.
- To measure λ for $k_{T}>0.6 \mathrm{GeV} / \mathrm{c}$ we need to increase the statistics to have a similar number of pairs at low q

MC two-pion correlation functions

- Monte Carlo simulations to compute two-pion correlation functions.

■ However, generators do not usually include the quantum statistical effects.

■ We use the formalism of the correlation after-burner (CRAB)*, which boosts produced particles from a given MC generator to the pair center of mass system and computes their squared wave function, which is then used as a weight for the numerator.

- The momentum distributions in the numerator are computed using the event mixing technique.
* S. Pratt et al., Nucl. Phys. A 566, 103c (1994)

UrQMD simulation and core - halo separation

■ We simulated 100,000 central $\mathrm{Bi}+\mathrm{Bi}$ UrQMD central events (impact parameter between 0-1 fm) in the cascade mode at two energies: $\sqrt{s_{N N}}=4.0,9.2 \mathrm{GeV}$.

- CRAB was then used to include the correlation of charged pions.

■ We separated primary and secondary pions. We consider that secondaries were produced in the decay of resonances (mainly ρ, Δ, ω, $N(1440), \rho(1700)$ and K^{*} decays). Primary are the rest of the pions.

Two-pion correlation function, $\sqrt{S_{N N}}=4.0 \mathrm{GeV}$

All pions

Lorentzian: $C_{2}\left(q_{\text {inv }}\right)=1+\lambda \frac{R^{2}}{q_{\text {inv }}^{2}+R^{2}}$
$R=10.405 \pm 0.329 \mathrm{fm}, \lambda=1.002 \pm 0.024$
Gaussian $C_{2}\left(q_{i n v}\right)=1+\lambda \exp \left(-\frac{q_{i n v} R^{2}}{2}\right)$
$R=9.268 \pm 0.18 \mathrm{fm}, \lambda=0.87 \pm 0.016$

Two-pion correlation function, $\sqrt{s_{N N}}=9.2 \mathrm{GeV}$

All pions

Lorentzian: $C_{2}\left(q_{\text {inv }}\right)=1+\lambda \frac{R^{2}}{q_{\text {inv }}+R^{2}}$
$R=11.737 \pm 0.404 \mathrm{fm}, \lambda=1.002 \pm 0.027$
Gaussian $C_{2}\left(q_{i n v}\right)=1+\lambda \exp \left(-\frac{q_{i n v} R^{2}}{2}\right)$
$R=10.426 \pm 0.261 \mathrm{fm}, \lambda=0.867 \pm 0.02$

Comparison at the two different energies

Separation of primaries and secondaries $\sqrt{S_{N N}}=4.0 \mathrm{GeV}$

- Gaussian fit
- $R_{\text {prim, } 4.0 \mathrm{GeV}}=4.905 \pm 0.046 \mathrm{fm}$
- $\lambda_{\text {prim, } 4.0 \mathrm{GeV}}=0.957 \pm 0.008$
- $R_{\text {second,4.0GeV }}=9.198 \pm 0.229 \mathrm{fm}$
- $\lambda_{\text {second, } 4.0 \mathrm{GeV}}=0.849 \pm 0.02$

Separation of primaries and secondaries
 $$
\sqrt{S_{N N}}=9.2 \mathrm{GeV}
$$

- Gaussian fit
- $R_{\text {prim, }, 9.2 \mathrm{GeV}}=5.112 \pm 0.085 \mathrm{fm}$
- $\lambda_{\text {prim, }, 9.2 \mathrm{GeV}}=0.988 \pm 0.015$
- $R_{\text {second, }, 9.2 \mathrm{GeV}}=10.551 \pm 0.206 \mathrm{fm}$
- $\lambda_{\text {second, } 9.2 \mathrm{GeV}}=0.859 \pm 0.016$

MPD finite resolution

- The NICA-MPD has a momentum resolution of 1.5 \% for particles with total momentum of about 0.2 GeV
A. Maevskiy, et al., Eur. Phys. J. C 81599 (2021)
- The nominal design relative momentum resolution is about 5 MeV
- This can be included in our calculations by fixing the smearing parameter of CRAB at 5 MeV

Finite resolution effects on the separation at $\sqrt{S_{N N}}=4.0 \mathrm{GeV}$

Finite resolution effects on the separation at $\sqrt{S_{N N}}=9.2 \mathrm{GeV}$

Primary	Before smearing	After smearing
R	$5.112 \pm 0.085 \mathrm{fm}$	$4.808 \pm 0.048 \mathrm{fm}$
λ	0.988 ± 0.015	0.892 ± 0.008

Secondar y	Before smearing	After smearing
\mathbf{R}	$10.551 \pm 0.206 \mathrm{fm}$	$10.307 \pm 0.32 \mathrm{fm}$
λ	0.859 ± 0.016	0.773 ± 0.022

Conclusions

- The source radii for primary particles is significantly smaller than for secondary particles
- The radii grow as the energy increases
- The finite resolution of the MPD will not affect significantly the estimation of the sizes the sources, provided the best case resolution scenario design is achieved
■ More studies needed, including less optimist smearing and different total pair momenta
- Implement Coulomb and other possible final state effects

Thank you!

Backup

Bertsch-Pratt systmem

Bertsch-Pratt Momentum Coordinates

$\mathrm{C}\left(\mathrm{q}_{\text {out }}, \mathrm{q}_{\text {side }}, \mathrm{q}_{\text {long }}\right)=$

$$
1+\lambda \cdot \exp \left(-R_{\text {out }}^{2} \cdot q_{\text {out }}^{2}-R_{\text {side }}^{2} \cdot q_{\text {side }}^{2}-R_{\text {long }}^{2} \cdot q_{\text {long }}^{2}-2 R_{\text {ol }}^{2} \cdot q_{\text {out }} \cdot q_{\text {long }}\right)
$$

Variable dependence

- In general C_{2} depends on the two four-momenta p_{1} and p_{2}.
- However $q \cdot K=q_{0} K_{0}-\vec{q} \cdot \vec{K}=0$
- This implies $q_{0}=\frac{\vec{q} \cdot \vec{K}}{K_{0}}$
- We may then transform the q-dependence into a dependence on \vec{q}
- Moreover, if the pair is of similar energy then K is approximately on-shell and the correlation function becomes a function of \vec{q} and \vec{K}

$$
C_{2}(q, K) \rightarrow C_{2}(\vec{q}, \vec{K})
$$

