Physics with Tagged Forward Protons in Proton-Proton Collisions at RHIC

The Journey from Elastic Scattering to Central Exclusive Production and Back

Włodek Guryn Brookhaven National Laboratory

- 1. Elastic Scattering
- 2. PP2PP experiment Roman Pots and first results
- 3. Move to STAR experiment
- 4. Results at STAR
 - Central Exclusive Production
 - Proton Proton elastic scattering
- 5. Summary

How it all started: The ρ -value from UA4

It was summer of 1992 or so when I attended a student/postdoc seminar at FNAL (I was working on D0 experiment at the time). I learned about the anomalous ρ–measurement at CERN.

Volume 198, number 4

PHYSICS LETTERS B

THE REAL PART OF THE PROTON-ANTIPROTON ELASTIC SCATTERING AMPLITUDE AT THE CENTRE OF MASS ENERGY OF 546 GeV

UA4 Collaboration

Amsterdam-CERN-Genova-Napoli-Palaiseau-Pisa

D BERNARD^{a 1}, M BOZZO^b, P L BRACCINI^c, F CARBONARA^d, R. CASTALDI^c, F CERVELLI^c, G CHIEFARI^d, E DRAGO^d, M HAGUENAUER^e, V INNOCENTE^{e 2}, P KLUIT¹, S LANZANO^d, G MATTHIAE^{d 3}, L MEROLA^d, M. NAPOLITANO^d, V. PALLADINO^d, G. SANGUINETTI^c, P. SCAMPOLI^c, S SCAPELLATO^{c 4}, G SCIACCA^d, G SETTE^b, J. TIMMERMANS¹, C VANNINI^c, J VELASCO^{a 5}, P G VERDINI^c and F VISCO^d

¹ CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland

^b Department of Physics and Sezione INFN, I-16146 Genoa, Italy

⁶ Department of Physics and Sezione INFN, I-56100 Pisa, Italy

^d Department of Physics and Sezione INFN, I-80125 Naples, Italy

LPNHE/IN2P3-CNRS Ecole Polytechnique, F-91128 Palaiseau, France

* NIKHEF-H, NL-1009 DB 4msterdam, The Netherlands

Received 25 August 1987

PHYSICS L

Volume 198, number 4

Fig. 4 The present result on the parameter ρ is shown together with lower energy data for pp and $\bar{p}p$ elastic scattering

Proton-antiproton elastic scattering was measured at the CERN SPS Collider at the centr-of-mass energy $\sqrt{s} = 546$ GeV in the Coulomb interference region. The data provide information on the phase of the hadronic amplitude in the forward direction. The conventional analysis gives for the ratio ρ of the real to the imaginary part of the hadronic amplitude the result $\rho = 0.24 \pm 0.04$

The expected value was $\rho = 0.12$

Knowing that RHIC program was being formulated I decided that this would be a good thing to check at RHIC.

Włodek Guryn BNL

The Gap – Status at the time of the proposal

Highest energy at that time:

pp: 63 GeV (ISR)

pp: 1.8 TeV (Tevatron)

pp2pp energy range: 50 GeV $\leq \sqrt{s} \leq$ 500 GeV

$$\rho = \frac{Re f_h}{Im f_h} \bigg|_{t=0}$$

$$\sigma_{tot}^2 = \left(\frac{16\pi (\hbar c)^2}{1+\rho^2}\right) \frac{d\sigma_{el}^h}{dt} \bigg|_{t=0}$$

$$f_h = \left(\frac{\sigma_{tot}}{4\pi}\right) (\rho + i) e^{-\frac{1}{2}B|t|}$$

RHIC: Heavy Ion and Polarized Proton – Proton Collider

The Setup

$$\vec{p}_1 = -\vec{p}_2 \Rightarrow \left(\Theta_x^1, \Theta_y^1\right) = \left(-\Theta_x^2, -\Theta_y^2\right)$$

Spin dependence in elastic scattering

Matrix elements

$$\phi_{1}(s,t) = \langle ++ | M | ++ \rangle \text{ non-flip}$$

$$\phi_{2}(s,t) = \langle ++ | M | -- \rangle \text{ double spin flip}$$

$$\phi_{3}(s,t) = \langle +- | M | +- \rangle \text{ non-flip}$$

$$\phi_{4}(s,t) = \langle +- | M | -+ \rangle \text{ double spin flip}$$

$$\phi_{5}(s,t) = \langle ++ | M | +- \rangle \text{ single spin flip}$$

$$\phi_{i}(s,t) = \phi_{i}^{EM}(s,t) + \phi_{i}^{HAD}(s,t)$$

$$\frac{d\sigma}{dt} = \frac{2\pi}{s^2} \left\{ |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2 \right\}$$

$$A_N(s,t)\frac{d\sigma}{dt} = \frac{-4\pi}{s^2} \operatorname{Im}\left\{ \phi_5^*(\phi_1 + \phi_2 + \phi_3 - \phi_4) \right\}$$

$$r_5 = \operatorname{Re} r_5 + i \operatorname{Im} r_5 = \frac{m\phi_5}{\sqrt{-t} \operatorname{Im} \phi_+}$$

TABLE I: Double spin asymmetries A_{NN} , A_{SS} , $(A_{NN} + A_{SS})/2$ and $(A_{NN} - A_{SS})/2$ for the *t*-interval $0.010 \le -t \le 0.030 \; (\text{GeV/c})^2$ at $< -t >= 0.0185 \; (\text{GeV/c})^2$.

	A_{NN}	A_{SS}	$(A_{NN} + A_{SS})/2$	$(A_{NN} - A_{SS})/2$
Asym	0.0298	0.0035	0.0167	0.0131
$\Delta Asym \text{ (stat.+norm.)}$	± 0.0166	± 0.0081	± 0.0091	± 0.0096
$\Delta Asym$ (syst.)	± 0.0045	± 0.0031	± 0.0034	± 0.0072
$\Delta Asym$ due to $\Delta (P_Y \cdot P_B)$	$\pm 32.3~\%$			

Phys. Lett. B647, 98 - 103 (2007)

PP2PP

Move to the STAR experiment

- A big motivation was Central Exclusive Production (CEP) to take advantage of combining Roman Pots of the PP2PP experiment with the STAR's capabilities to measured central system.
- Elastic scattering program also continued.

Single spin A_N asymmetry result

Matrix elements

 $\phi_{1}(s,t) = \langle ++ | M | ++ \rangle \text{ non-flip}$ $\phi_{2}(s,t) = \langle ++ | M | -- \rangle \text{ double spin flip}$ $\phi_{3}(s,t) = \langle +- | M | +- \rangle \text{ non-flip}$ $\phi_{4}(s,t) = \langle +- | M | -+ \rangle \text{ double spin flip}$ $\phi_{5}(s,t) = \langle ++ | M | +- \rangle \text{ single spin flip}$ $\phi_{i}(s,t) = \phi_{i}^{EM}(s,t) + \phi_{i}^{HAD}(s,t)$

$$\frac{d\sigma}{dt} = \frac{2\pi}{s^2} \left\{ |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2 \right\}$$

$$A_N(s,t)\frac{d\sigma}{dt} = \frac{-4\pi}{s^2} \operatorname{Im}\left\{ \phi_5^*(\phi_1 + \phi_2 + \phi_3 - \phi_4) \right\}$$

Re $r_5 = 0.0017 + 0.0017$ (stat.) + 0.061 (syst.) Im $r_5 = 0.007 + 0.03$ (stat.) + 0.049 (syst.)

Pomeron spin-flip is consistent with zero

Result on A_N – Comparison with Models and World Data

Re $r_5 = 0.0017 + -0.0017$ (stat.) + -0.061 (syst.) Im $r_5 = 0.007 + -0.03$ (stat.) + - 0.049 (syst.)

STAR

Central Exclusive Production (CEP) Exclusive means that all particles in the final state are measured

- In terms of QCD, Pomeron exchange consists of the exchange of a color singlet combination of gluons.
- Hence, triggering on forward protons at high (RHIC) energies predominantly selects exchanges mediated by gluonic matter.

Event Cuts for pp => p $\pi^+\pi^-$ p

- 1. Only Elastic or Inelastic combination of protons in Roman Pots were accepted
- 2. Exactly 2 good quality tracks in Roman Pots (one per side, all 8 planes were used)
- 3. Exactly 2 primary TPC tracks from the same vertex
- 4. 2 TOF hits matched with tracks from TPC
- 5. Total charge of tracks = 0
- 6. No cuts on TPC/TOF track quality
- 7. Missing transverse momentum of all measured particles $p_T^{miss} < 70$ MeV/c to assure exclusivity
- 8. PID for $\pi^+\pi^-$ based on dE/dx and ToF

Results on CEP: $\pi^+\pi^-$, K⁺K⁻, $p\bar{p}$ production at \sqrt{s} = 200 GeV

J. High Energy Phys. 2020, 178 (2020)

- 1. In $\pi^+\pi^-$ spectrum drop at f0(980), a peak at f2(1270) MeV and structure at about 2200 MeV , are observed.
- 2. Comparison with various continuum production models will help fine tune those models .

Results on CEP at $\sqrt{s} = 510$ GeV: $\pi^+\pi^-$ and K⁺K⁻ spectra

Tomas Truhlar, PhD student at CTU Prague work in progress

- 1. Features like those at \sqrt{s} = 200 GeV are observed
- 2. Increased statistics for K⁺K⁻ channel
- 3. Both compare well with the Graniitti simulator

Results on Elastic scattering: $\sqrt{s}=200$ GeV B-slope and $\sigma_{ m tot}$

Use optical theorem to obtain σ_{tot}

- 1. STAR obtained results on total, elastic and inelastic cross section in proton-proton collisions at \sqrt{s} = 200 GeV.
- 2. The results are within 2σ of the World data fits do not include STAR data points.
- 3. This measurement "fills" the gap between results from CERN ISR (62 GeV) and TeV energies at the LHC.

Results at 510 GeV: shape of $d\sigma/dt$

 $0.23 \le -t \le 0.67 \ GeV^2$

In the *t* range of this measurement the exponential slope B(t) has a quadratic dependence on *t*

Summary

- 1. The program with forward protons at RHIC delivered many important results
- 2. What started as a stand-alone experiment evolved into a more comprehensive physics program with the STAR detector
- 3. Results included:
- Elastic scattering and its spin dependence at $\sqrt{s} = 200 \text{ GeV}$
- A very comprehensive study of CEP at √s = 200 GeV was performed, which will affect phenomenological models
- 4. Total cross section measurement at $\sqrt{s} = 200 \text{ GeV}$
- 5. Measurement of pp elastic cross section at $\sqrt{s} = 510 \text{ GeV}$
- 6. Measurement od double spin asymmetry A_{NN} in pp at $\sqrt{s} = 200 \text{ GeV}$
- 7. Differential cross section measurement at $\sqrt{s} = 510 \text{ GeV}$
- 8. Study of CEP at $\sqrt{s} = 510 \text{ GeV}$

This reach program would not happen if not for the ρ -measurement by UA4

BACKUP

All models predict B(t) dependence in the t range of this experiment