CROSS-CHECKING ODDERON SIGNALS

AT SMALL VALUES OF -t

T. Csörgö¹,2 and I. Szanyi 1,3

1 Wigner RCP, Budapest, Hungary
2 MATE KRC, Gyöngyös, Hungary
4 Eötvös University, Budapest, Hungary

Statistically Significant Observations of Odderon

New: Small -t signals, Model independently Model dependently LBB predictions

Results on both ρ and \mathbf{R} from data at the dip region

Odderon: 48 years old scientific puzzle

Odderon: L. Lukaszuk, B. Nicolescu, Lett. Nuovo Cim. 8, 405 (1973) Received: 31 July 1973

Odderon is an odd component of elastic scattering:
Changes sign for crossing

1972

Odderon name coined: D. Joynson, E. Leader, B. Nicolescu, C. Lopez, Nuovo Cim. 30A, 345 (1975) - Well established in QCD by now ! Honorable mention: A. V. Efremov, R. Peschanski, JINR-E2-6350 (1972)

First publications, Odderon with > 5 б

```
Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies
T. Csörgó (Wigner RCP, Budapest and CERN), T.Novak (Unlisted, HU), R. Pasechnik (Lund U., Dept. Theor. Phys.), A._Ster (Wigner RCP,
Budapest), I.Szanyi (Wigner RCP, Budapest) (Dec 26, 2019)
Published in: Eur.Phys.J.C 81 (2021) 2, 180 • e-Print: 1912.11968 [hep-ph]
[4 pdf © DOI ■ cite
```

Eur. Phys. J. C (2021) 81: 180, Published: 23 February 2021 https://doi.org/10.1140/epic/s10052-021-08867-6

Observation of Odderon effects at LHC energies: a real extended Bialas-Bzdak model study
T. Csorgo (Wigner RCP, Budapest and EKU KRC, Gyongyos), I. Szanyi (Eotvos U. and Wigner RCP, Budapest) (May 28, 2020) Published in: Eur.Phys.J.C 81 (2021) 7, 611 • e-Print: 2005.14319 [hep-ph]
[4) pdf © DOI 『 cite
Eur. Phys. J. C (2021) 81:611, Published: 13 July 2021 https://doi.org/10.1140/epjc/s10052-021-09381-5

Comparison of $p p$ and $p \bar{p}$ differential elastic cross sections and observation of the exchange of a colorless C-odd gluonic compound

Odderon Exchange from Elastic Scattering Differences between $p p$ and $p \bar{p}$ Data at 1.96 TeV and from pp Forward Scattering Measurements TOTEM and DO Collaborations • V.M. Abazov (Dubna, JINR) et al. (Dec 7, 2020)
Published in: Phys.Rev.Lett. 127 (2021) 6, 062003 • e-Print: 2012.03981 [hep-ex]
(4) pdf
(3) links
(2) DOI

『 cite

Phys. Rev. Lett. 127 (2021) 6, 062003, Published: 4 August 2021 https://doi.org/10.1103/PhysRevLett.127.062003

Three Oldest Hungarian Universities

UP Story - 650 years

University of Pécs: 1367

The history of higher education in Pécs dates back to 1367, when Louis the Great initiated the establishment of a university in the episcopal city of Pécs. As a result of an integration process of several stages, the University of Pécs was founded, which has become one of the most famous, prestigious institutions having a leading role in regional education. It has ten faculties which cover the full spectrum of high-quality higher education.

The University of Debrecen, the oldest institution of higher education in the country operated continuously in the same city, is one of the research universities of national excellence in Hungary offering the widest spectrum of educational programs in 14 faculties and 24 doctoral schools.

University of Debrecen: 1538

ts of higher education in the city reach all the way back to the $16^{\text {th }}$ century and the foundation Reformed College of Debrecen in 1538. The College played a central role in Hungarian education and culture for centuries. This is the date featured on the symbol of the university as well, the gerundium, a tool originally used by the students of the Reformed College to put out fires, showing respect for ancestors and traditions.
(S,C) structure evident, S: statement, valid if
C: condition is satisfied See talk of R. Dardashti at ISMD21

Eötvös Loránd University: 1635

Thepredecessor of Eörvös Loránd University (ELTE) was founded in Nagyszombat in 1635 (sixteen thirty-five) by Archbishop of Esztergom, Péter Pázmány, and it is the oldest Hungarian university where the teaching has continued uninterrupted since its inception. More than sixty years

Formalism: elastic scattering

$$
\frac{d \sigma(s)}{d t}=\frac{1}{4 \pi}\left|T_{e l}(s, \Delta)\right|^{2}, \quad \Delta=\sqrt{|t|}
$$

$$
\begin{aligned}
& \sigma_{e l}(s)=\int_{0}^{\infty} d|t| \frac{d \sigma(s)}{d t} \\
& A(s)=\lim _{t \rightarrow 0} \frac{d \sigma}{d t}(s, t)
\end{aligned}
$$

$$
A(s)=\frac{1}{16 \pi}\left(1+\rho_{0}^{2}(s)\right) \sigma_{t o t}^{2}(s)
$$

$$
\begin{aligned}
B(s, t) & =\frac{d}{d t} \ln \frac{d \sigma(s)}{d t} \\
\rho(s, t) & \equiv \frac{\operatorname{Re} T_{e l}(s, \Delta)}{\operatorname{Im} T_{e l}(s, \Delta)}
\end{aligned}
$$

$$
\begin{aligned}
& B(s) \equiv B_{0}(s)=\lim _{t \rightarrow 0} B(s, t), \\
& \hline \rho(s) \equiv \rho_{0}(s)=\lim _{t \rightarrow 0} \rho(s, t) \\
& \hline \sigma_{\text {tot }}(s) \equiv 2 \operatorname{Im} T_{e l}(\Delta=0, s)
\end{aligned}
$$

Basic problem: do/dt measures an amplitude, modulus squared. If Odderon exists: signals in elastic scattering at $t=0$ and at $-\mathrm{t}>0$.

Formalism: Elastic scattering at small -t

$$
\frac{d \sigma}{d t}(s, t) \simeq A(s) \exp (t B(s))
$$

$$
\sigma_{e l}(s)=\int_{0}^{\infty} d|t| \frac{d \sigma(s)}{d t}
$$

$$
A(s)=\frac{1}{16 \pi}\left(1+\rho_{0}^{2}(s)\right) \sigma_{t o t}^{2}(s)
$$

$$
\sigma_{\mathbf{e l}}(s)=\frac{1}{16 \pi}\left(1+\rho_{0}^{2}(s)\right) \frac{\sigma_{t o t}^{2}(s)}{B_{0}(s)}
$$

If Odderon exists: signals in elastic scattering at $t=0$ and at $-\mathrm{t}>0$. Where from the significance of the signal is coming ?

Odderon Search at small -t

$$
T_{\mathrm{el}}^{O}(s, t)=\frac{1}{2}\left(T_{\mathrm{el}}^{p \bar{p}}(s, t)-T_{\mathrm{el}}^{p p}(s, t)\right) \quad \text { valid for } \sqrt{s} \geq 1 \mathrm{TeV}
$$

Some simple consequences at small -t, Gaussian sources:

If any of

$$
\frac{d \sigma}{d t}(s, t) \simeq A(s) \exp (t B(s))
$$

$$
\begin{aligned}
A^{p p}(s) & \neq A^{p \bar{p}}(s) \\
B^{p p}(s) & \neq B^{p \bar{p}}(s)
\end{aligned}
$$

is statistically significant

$$
\text { for } \sqrt{s} \geq 1 \mathrm{TeV} \Longrightarrow T_{e l}^{O}(s, 0) \neq 0
$$

$$
\begin{aligned}
\rho_{0}^{p p}(s) & \neq \rho_{0}^{p \bar{p}}(s), \\
\sigma_{e l}^{p p}(s) & \neq \sigma_{e l}^{p \bar{p}}(s), \\
\sigma_{t o t}^{p p}(s) & \neq \sigma_{t o t}^{p \bar{p}}(s) .
\end{aligned}
$$

Odderon Search at small -t

$$
T_{\mathrm{el}}^{O}(s, t)=\frac{1}{2}\left(T_{\mathrm{el}}^{p \bar{p}}(s, t)-T_{\mathrm{el}}^{p p}(s, t)\right) \quad \text { valid for } \sqrt{s} \geq 1 \mathrm{TeV}
$$

Some simple consequences at small -t, Levy sources:

If any of

$a^{p p}(s) \neq a^{p \bar{p}}(s)$,
$b^{p p}(s) \neq b^{p \bar{p}}(s)$,

$$
\alpha_{L}^{p p} \neq \alpha_{L}^{p \bar{p}}
$$

$$
\frac{d \sigma}{d t}(s, t) \simeq a(s) \exp \left[-(t b(s))^{\alpha_{L} / 2}\right]
$$

is statistically significant

$$
\text { for } \sqrt{s} \geq 1 \mathrm{TeV} \Longrightarrow T_{e l}^{O}(s, 0) \neq 0
$$

$$
\begin{aligned}
\rho_{0}^{p p}(s) & \neq \rho_{0}^{p \bar{p}}(s), \\
\sigma_{e l}^{p p}(s) & \neq \sigma_{e l}^{p \bar{p}}(s), \\
\sigma_{t o t}^{p p}(s) & \neq \sigma_{t o t}^{p \bar{p}}(s) .
\end{aligned}
$$

Levy generalized Bialas-Bzdak Model

Simple results at small -t:

$$
a(s)=\frac{81}{16} \pi\left(2 R_{q}^{\alpha_{L}(s)}(s)\right)^{4 / \alpha_{L}}\left(1+4 \alpha_{R}^{2}(s)\right)
$$

$$
b(s)=\frac{1}{36}\left(\frac{4}{3}\right)^{2 / \alpha_{L}(s)}\left(\left(2+2^{\alpha_{L}(s)}\right) R_{q d}^{\alpha_{L}(s)}(s)+3^{\alpha_{L}(s)}\left(2 R_{d}^{\alpha_{L}(s)}(s)+R_{q}^{\alpha_{L}(s)}(s)\right)\right)^{2 / \alpha_{L}(s)}
$$

$$
\rho_{0}(s)=2 \alpha_{R}(s)
$$

$$
\sigma_{t o t}(s)=9 \pi\left(2 R_{q}^{\alpha_{L}(s)}(s)\right)^{2 / \alpha_{L}(s)}
$$

$$
\sigma_{e l}(s)=\frac{a(s)}{b(s)} \Gamma\left(\frac{2+\alpha_{L}(s)}{\alpha_{L}(s)}\right)
$$

From data fits: $\mathbf{R}_{\mathbf{q} /} \mathbf{R}_{\mathrm{d} /} \mathbf{R}_{\mathrm{qd}} \alpha_{\mathrm{L}}$ is same in pp and pbarb But!

$$
\rho_{0}^{p p}(s) \neq \rho_{0}^{p \bar{p}}(s)
$$

Lévy α-stable model for the non-explick a barto to select papers . Click pheton differential cross section bar again to reset your selection.
T. Csörgó (Karoly Robert U. Coll. and Budapest, RMKI), S. Hegyi, I. Szanyi (karoly. Robert U. Coll. and Budapest, RMKI and Eotvos U., Dept. Atomic Phys.) (Aug 9, 2023)
Published in: Universe 9 (2023) 361 • e-Print: 2308.05000 [hep-ph]

Lévy α-stable model for the non-explick a barto select papers. Clidktheton differential cross section bar again to reset your selection.
T. Csörgố (Karoly Robert U. Coll. and Budapest, RMEI), S. Hegyi, Szanyi (karoly, Robert U. Coll. and Budapest, RMKI and Eotvos U., Dept. Atomic Phys.) (Aug 9, 2023)
Published in: Universe 9 (2023) 361 • e-Print: 2308.05000 [hep-ph]

$\frac{d \sigma}{d t}(s, t) \simeq a(s) \exp \left[-(t b(s))^{\alpha_{L} / 2}\right]$
From Glauber's theory, $\mathrm{p}=(\mathrm{q}, \mathrm{d})$ Good quality fits at 8 TeV and also at every low -t dataset for pp, pbarp

$$
\frac{d \sigma}{d t}(s, t) \simeq a(s) \exp \left[-(t b(s))^{\alpha_{L} / 2}\right]
$$

$$
\frac{d \sigma}{d t}(s, t) \simeq a(s) \exp \left[-(t b(s))^{\alpha_{L} / 2}\right]
$$

10^{3}
10^{4}

ρ_{0} from fits to data

Observation of Odderon effects at LHC energies: a real extended Bialas-Bzdak model study
T. Csorgo (Wigner RCP, Budapest and EKU KRC, Gyongyos), I. Szanyi (Eotvos U. and Wigner RCP, Budapest) (May 28, 2020)

Published in: Eur.Phys.J.C 81 (2021) 7, 611 • e-Print: 2005.14319 [hep-ph]

From data fits: $\mathbf{R}_{\mathbf{q},} \mathbf{R}_{\mathrm{d}}, \mathbf{R}_{\mathbf{q d}}$ is the same, but $\alpha \sim \rho$ (opacity) is not the same in pp and pbarb 15

$$
\rho_{0}^{p p}(s) \neq \rho_{0}^{p \bar{p}}(s),
$$

Levy + Bialas-Bzdak at small t

$$
\frac{d \sigma}{d t}(s, t) \simeq a(s) \exp \left[-(t b(s))^{\alpha_{L} / 2}\right]
$$

Easy to fit model, with dramatic consequences

$$
\begin{aligned}
b^{p p}(s) & =b^{p \bar{p}}(s) \\
\sigma_{t o t}^{p p}(s) & =\sigma_{t o t}^{p \bar{p}}(s)
\end{aligned}
$$

Strong form of Pomeranchuk theorem, but Signal of odderon exchange in optical point, ρ and elastic cross-section!

$$
\begin{aligned}
a^{p p}(s) & \neq a^{p \bar{p}}(s), \\
\rho_{0}^{p p}(s) & \neq \rho_{0}^{p \bar{p}}(s), \\
\sigma_{e l}^{p p}(s) & \neq \sigma_{e l}^{p \bar{p}}(s),
\end{aligned}
$$

OBSERVATION OF ODDERON

$2020 \rightarrow 2020$

THANK YOU FOR YOUR ATTENTION

ODE TO ODDERON \rightarrow OBERON

Ode to Odderon

Let's be truly happy, for what we've come upon:
We have just discovered the elusive odderon!

For forty-eight years, forging a ring of colors white:
Odd number of gluons
has been hiding in plain sight!

OBERON POETRY MAGAZINE

So happy together, with love for science and research: Happiness and pleasure must not slow down the search!

Let's live in harmony, and in equanimity: Let's make light of the fight, gloom is our true enemy!

BACKUP SLIDES

BACKUP SLIDES

\rightarrow C o cordis.europa.eu/article/id/429667-particle-physics-milestone-achieved-at-cern
Alkalmazások \square CERN \square ET \square Wigner \square Conf el Stabil-Invest Kft. \square Szanyi István

Follow the latest news and projects about COVID-19 and the European Commission's coronavirus response

European

 CORDIS EnglishEN
For most of us, physics terms such as odderon are - and will always remain - firmly lodged in the science fiction realm. Not so for the scientific community, whose determined members spent nearly half a century searching (without much success) for this mythical particle.

Now, a research team including physicists from Hungary and Sweden has discovered the odderon by analysing experimental data from the Large Hadron Collider (LHC) at Switzerland's European Organization for Nuclear Research, better known as CERN. Supported by the EU-funded MorePheno project, the physicists have published a paper describing their findings in the 'The European Physical Journal C'.

Particle physics milestone achieved at CERN

After 50 years of research, physicists have found evidence that the elusive subatomic quasiparticle called odderon actually exists.

BACKUP SLIDES

Zin metrosivet
Discovery of the odderon
In the 1seces cepertinetal data in the tital craon wation for protan-puhan criblara (0) asgoed hivo wointairy mocruod and han flutrotry
 booting evei madarimin bo cuphtn Ets bahurisur whith inmivad ancupal contritustion to the

 of artipodimuar very diflaut to proder, data in ", mer wasce bel
 culange
 be much higher tiotal unior of mamencgr (Axamsich) at the Irkernethy Sornge Ring (SD) collder at CERN wowed that on mazitaly growing at the eacegy benawh wegry the gotian If Nhit b the thenetical maximul perritiod rite ar growic Mand ${ }^{\circ}{ }_{n}-\left\|\log \mid F_{2}\right\|^{2}$. Like the pomaron culange, tharmachartim wis

 high ererglaons wacld And strilur grown with the arrs factrer forty and ph cran wection and the he drycrue betwan r_{n} mind on_{p} woll gromo meen la 1903, Lexek takamik and Aararbl Nextocu agyuel thai thex cruild is princtple, hon ate a 'crouthg odd' mechartum

 mainartim krown zodiven ahuage
Themin mpication of odderes
 not becorse oqual nit the crargy incraved halo tropled that in al parta of thepp wad p dutr atierting anphtada wrold not bacrusequal and the dupar of har difrorethl cruw wethrin
Itanily
Larnily durtng the hat wak da were obtetherd showing flat the daper of the dffireritigal cruw-actions 5arppand ply ou $=53 \mathrm{CiV}$ wer indand afferni, but the gereral friting in the crmmuntly wax that fibl wau not neflidert to crnêrn the critence Ohe oddeser tor parenhod on qurium ter papen hasod on quartu dhumodymurica hoved that pencron wad oddaroa cuharge could erarge in mality an arouit if the fana prodeod by the athange of an even or an odl namber of glucra in the waticring procem Themat diact vay io denaninalie the extivines of the odikrun trito compues $g_{\text {man }}$ and of at equal mand wafliterily high
acghan, wher 1 tarak to lyporm cantribetisen frum the known mechanimssuthat cratibuik at Fwer enctglax Dixifuen the Nicur
 Nathral lakotiores wer io Nanal labornitry, wer ti rowth, and tha wax corerned for the p ans at he high crargic: (ketwer $2.76 \mathrm{TEV}_{\text {and }} 13$ TcV) ratued athe large Hadrun Caldder (LHC) \pm CEENN. Unfirtarald be highot enargy malad far

 roct ormpion of n_{0} mid σ, dentical lin high encrito wif not poudik. To muke rutien wanc, nodilitrat manumana Ferrulhb dhagoul wtith ach othar Igrifiarily Nonathelor, in a mueni
 BEN TOITM and Ba Ferrila So crilhbanitionuruporided the tworcriof of the oddron. This aodl mineodet atralition dow in the erergy of the p y and in the excrgy ofthe 1 , a the L.HCinda cormartion weth the pf affirenial crues matise ncuand at the Tenatme. The Igrthart dffornce in the chupe fidferatal cros-metiona (ptctured) at tha llon high anorgy at het corvincing endencer for the
otarnce of the odikren.

(\%)
Kex,

Three Odderon Proceedings with＞ 5 o

```
Scaling of high－energy elastic scattering and the observation of Odderon
T．Csörgó（Wigner RCP，Budapest and Eszterhazy Karoly U．，Eger），T．Novák（EKU KRC，Gyongyos），R．Pasechnik（Lund U．，Dept．Theor． Phys．），A．Ster（Wigner RCP，Budapest），1．－Szanyi（Wigner RCP，Budapest and Eotvos U．）（Apr 15，2020）
Published in：Gribov－90 Memorial Volume，pp．69－80（2021）（World Scientific，Singapore，ed．Yu．Dokshitzer，P，L\evai，\A．Luk\’acs and J．Nyiri）• e－Print： 2004.07318 ［hep－ph］
（4）pdf © DOI 巨 cite
```

Gribov＇90 Memorial Volume，pp．69－80（2021）
https：／／doi．org／10．1142／9789811238406 0012

Proton Holography－－Discovering Odderon from Scaling Properties of Elastic Scattering
T．Csorgo（Wigner RCP，Budapest and Eszterhazy Karoly U．，Eger），T．Novak（EKU KRC，Gyongyos），R．Pasechnik（Lund U，and Rez， Nucl．Phys．Inst），A．Ster（Wigner RCP，Budapest），I．Szanyi（Wigner RCP，Budapest and Eotvos U．）（Apr 15，2020）

Published in：EPJ Web Conf． 235 （2020） 06002 • Contribution to：ISMD 2019 • e－Print： 2004.07095 ［hep－ph］
（4）pdf e）DOI 巨 cite
EPJ Web Conf． 235 （2020）06002，proc．ISMD 2019 https：／／doi．org／10．1051／epjconf／202023506002

Comparison of differential elastic cross sections in $p p$ and $p \bar{p}$ collisions as evidence of the existence of the colourless C－odd three－gluon state

D0 and Totem Collaborations • Christophe Royon（Kansas U．）for the collaborations．（Dec 5，2020）
Published in：PoS ICHEP2020（2021） 496 • Contribution to：ICHEP2020， $496 \cdot$ e－Print： 2012.03150 ［hep－ex］
（4）pdf © DOI 『 cite

Looking for Crossing-Odd(eron) effects

$$
\begin{aligned}
T_{\mathrm{el}}^{p p}(s, t) & =T_{\mathrm{el}}^{+}(s, t)-T_{\mathrm{el}}^{-}(s, t) \\
T_{\mathrm{el}}^{p \bar{p}}(s, t) & =T_{\mathrm{el}}^{+}(s, t)+T_{\mathrm{el}}^{-}(s, t), \\
T_{\mathrm{el}}^{+}(s, t) & =T_{\mathrm{el}}^{P}(s, t)+T_{\mathrm{el}}^{f}(s, t), \\
T_{\mathrm{el}}^{-}(s, t) & =T_{\mathrm{el}}^{O}(s, t)+T_{\mathrm{el}}^{\omega}(s, t)
\end{aligned}
$$

$$
\begin{aligned}
T_{\mathrm{el}}^{P}(s, t) & =\frac{1}{2}\left(T_{\mathrm{el}}^{p p}(s, t)+T_{\mathrm{el}}^{p \bar{p}}(s, t)\right) \\
T_{\mathrm{el}}^{O}(s, t) & =\frac{1}{2}\left(T_{\mathrm{el}}^{p \bar{p}}(s, t)-T_{\mathrm{el}}^{p p}(s, t)\right)
\end{aligned}
$$

Three simple consequences:

$$
T_{e l}^{O}(s, t)=0 \Longrightarrow \frac{d \sigma^{p p}}{d t}=\frac{d \sigma^{p \bar{p}}}{d t} \quad \text { for } \sqrt{s} \geq 1 \mathrm{TeV}
$$

$$
\frac{d \sigma^{p p}}{d t}=\frac{d \sigma^{p \bar{p}}}{d t} \quad \text { for } \sqrt{s} \geq 1 \mathrm{TeV} \nRightarrow T_{e l}^{O}(s, t)=0
$$

$$
\frac{d \sigma^{p p}}{d t} \neq \frac{d \sigma^{p \bar{p}}}{d t} \quad \text { for } \sqrt{s} \geq 1 \mathrm{TeV} \Longrightarrow T_{e l}^{O}(s, t) \neq 0
$$

Odderon differential cross-section from pp and ppbar collisions, Reggeized Philips-Barger:
A. Ster, L. Jenkovszky, T. Cs., arxiv:1501.03860, Phys.Rev.D 91 (2015) 7, 074018

Odderon search: strategy with scaling

Known trivial s-dependences in

$$
\sigma_{\mathrm{tot}}(\mathrm{~s}), \sigma_{\mathrm{el}}(\mathrm{~s}), \mathrm{B}(\mathrm{~s}), \rho(\mathrm{s})
$$

Try to scale this out
Look for data collapsing (scaling)
Look for scaling violations

In the TeV energy range:
Odderon is equivalent with
a crossing-odd component
Look for violations of C-symmetry

Close the energy gap with scaling

Honorable mentions: Odderon, qualitatively

Proposal for LHC to hunt down the Odderon:

```
Extracting the Odderon from mn snd \overline{m}nerstarince dats
Andras Ster (Budapest, RMKI), L__szlo_ Searching for the odderon in pp ->pp\mp@subsup{K}{}{+}\mp@subsup{K}{}{-}\mathrm{ and }pp->pp\mp@subsup{\mu}{}{+}\mp@subsup{\mu}{}{-}\mathrm{ reactions in the }\phi(1020)
Budapest, RMKI) (Jan 15, 2015)
Published in: Phys.Rev.D }91\mathrm{ (2015) 7,
```

resonance region at the LHC

Piotr Lebiedowicz (Cracow, INP), Otto Nachtmann (U. Heidelberg, ITP and Rzeszow U.), Antoni Szczzurek (Cracow, INP) (Nov 5, 2019) Published in: Phys.Rev.D 101 (2020) 9, 094012 • e-Print: 1911.01909 [hep-ph]

Qualitative Odderon signals: in t-dependence of $B(s, t)$ and $\rho(s, t)$

Odderon and proton substructure from a model-independent Lévy imaging of elastic $p p$ and $p \bar{p}$

collisions

T. Csörgó (Wigner RCP, Budape Ster (Wigner RCP, Budapest) (Jt
Published in: Eur.Phys.J.C 79 (2،

Odderon effects in the

Analytical representation for amplitudes and differential cross section of pp elastic scattering at 13 TeV
E. Ferreira (Rio de Janeiro Federal U.), A.K. Kohara (SENAI/CETIQT, Rio de Janeiro), T. Kodama (Rio de Janeiro Federal U. and Niteroi, Fluminense U.) (Nov 26, 2020)

Published in: Eur.Phys.J.C 81 (2021) 4, 290 • e-Print: 2011.13335 [hep-ph]

Evgenij Martynov (Kiev, INR), Basarab Nicolescu (Babes-Bolyai U.) (Au Published in: Eur.Phys.J.C 79 (2019) 6, 461 • e-Print: 1808.08580 [hep-

New physics from TOTEM's recent measurements of e

Ratio $\rho_{\bar{p} p}^{p p}(s)$ in Froissaron and maximal odderon approach
E. Martynov (BITP, Kiev), G. Tersimonov (BITP, Kiev) (Nov 15, 2019)

Published in: Phys.Rev.D 100 (2019) 11, 114039 • e-Print: 1911.06873 [hep-ph] Istwáno.Szzanyi (Uzhgorod Nat.
Published in: J.Phys.G 46 (201!
Froissaron and Maximal Odderon with spin-flip in pp and $\bar{p} p$ high energy elastic scattering
N. Bence (Uzhgorod Nat. U.), A. Lengyel (Unlisted, UA), Z. Tarics (Unlisted, UA), E. Martynov (BITP, Kiev), G. Tersimonov (BITP, Kiev)
(Sep 4, 2021)
Published in: Eur.Phys.J.A 57 (2021) 9, 265

