

Recent results from the TOTEM and CMS experiments

Frigyes NEMES on behalf of the TOTEM and CMS experiments **CERN***

ISMD 2023 MATE KRC, Gyöngyös, Hungary Aug. 21. – 26, 2023

*Also at MATE, Gödöllő – Gyöngyös Wigner RCP, Budapest, Hungary

Experimental layout & LHC optics (LHC Run II)

The Roman Pot (RP) stations of the TOTEM experiment

RP stations:

- 2 units (Near, Far) at about 5 m (RP220) and 10 m (RP210) distance
- Unit: 3 moveable RP to approach the beam and detect very small proton scattering angles (few µrad)
- BPM: precise position relative to beam
- Overlapping detectors: relative alignment (10 μm inside unit among 3 RPs)

10 planes of edgeless detectors

RP unit: 2 vertical, 1 horizontal pot + BPM

Si edgeless detector Frigyes Nemes, TOTEM - CM

The elastic d σ /dt distribution at $\sqrt{s} = 7$ and 13 TeV

- Elastic |t| distribution over a wide |t| range (up to few GeV²)
- Below dip exponential e^{-B|t|} behavior
- Dip moves to lower |t| with increasing Vs, proton becomes "larger"
- 1.5 2.5 GeV² power low behavior $|t|^{-n}$

$$\theta_x^* = \frac{1}{\frac{\mathrm{d}L_x}{\mathrm{d}s}} \left(\theta_x - \frac{\mathrm{d}v_x}{\mathrm{d}s} x^* \right) \,, \, \theta_y^* = \frac{y}{L_y}$$

Frigyes Nemes, TOTEM - CMS

Ingredients:

- Elastic rate as a function of |t| to determine the optical point OP
- N_{inel} is measured with the T2 inelastic telescope
- Cross-sections with $\rho = 0.1$ from TOTEM ρ measurement (see upcoming slides)

 $[\mu rad]$

 $\theta_x^{*\mathrm{L}}$

Basic properties of the data:

• $|t|_{min} = 8 \times 10^{-4} \text{ GeV}^2$

Analysis aims:

- Measure do_{el}/dt at the smallest possible |t|
- A_{C+H}= Coulomb + Hadronic + Interference terms
- Interference: the **phase** of hadronic amplitude appears

Frigyes Nemes, TOTEM - CMS

Latest TOTEM compilation together with more recent ATLAS compilation

Notes:

- Last TOTEM plot together with more recent ATLAS plot
- Lumi-independent σ_{tot} from $\beta^* = 90$ m: 110. 6 ± 3.4 mb
- ρ from $\beta^* = 2.5$ km, lumi-independent normalization: 0.09 ± 0.01
- ρ from $\beta^* = 2.5$ km, Coulomb normalization: 0.08(5) ± 0.01
- σ_{tot} from $\beta^* = 2.5$ km, Coulomb normalization: 110.3 ± 3.5 mb
- Combined lumi-independent and Coulomb normalization σ_{tot} : 110.5 ± 2.4 mb

Note:

 "Neglecting the small energy difference in Vs between the measurements of the TOTEM and D0 collaborations, the results provide evidence for a colourless C-odd 3-gluon compound exchange in the t-channel of proton-proton elastic scattering"

- > 3σ difference between $pp \& \overline{p}p @ s= 1.96$ TeV (assuming flat behaviour above $\sqrt{s} \sim 100$ GeV)
- For $\overline{p}p$ R estimate, use $d\sigma/dt$ of t-bins close to expected pp bump & dip position

- Published in Eur. Phys. J. C (2022) 82: 263
- Precise measurement of the diffractive minimum and bump

Nonresonant CEP of $\pi\pi$ at $\sqrt{s} = 13$ TeV

PAS on CERN document server

Presented at EPS-HEP 2023

- CMS TOTEM $\beta^* = 90 \text{ m} (2018)$
- RP acceptance $|t_y| > 0.2 \text{ GeV}^2$
- About 80 M events with two protons and two charged particles
- L1 trigger: double arm TOTEM RP, HLT: activity in CMS pixel detector
- Variables: proton pT's and phi (azimuthal angle diff.) and dipion inv. mass
- Central exclusive: particle antiparticle, mostly $\pi^+\pi^-$, K^+K^-
- Focusing on non-resonant region: $0.35 < m_{\pi+\pi-} < 0.65 \text{ GeV}$
- Effectively a Pomeron Pomeron collider \rightarrow gluon-rich initial state

Theory – resonances vs background

resonant

nonresonant continuum

$$\mathcal{M} = M_{13}(t_1, s_{13}) \frac{F^2(\hat{t})}{\hat{t} - m^2} M_{24}(t_2, s_{24}) + M_{14}(t_1, s_{14}) \frac{F^2(\hat{u})}{\hat{u} - m^2} M_{23}(t_2, s_{23}),$$

- Matrix element M for nonresonant continuum process
- F(t) = meson-Pomeron form factor
- M_{ik} = "interaction" between Pomeron and created meson
- Meson propagator = $1/(\hat{t} m^2)$
- At high energies Pomeron exchange dominates

$$M_{ik}(t_i, s_{ik}) = i s_{ik} C_{\mathbb{IP}} \left(\frac{s_{ik}}{s_0}\right)^{\alpha_{\mathbb{IP}}(t_i) - 1} \exp\left(\frac{B_{\mathbb{IP}}}{2} t_i\right)$$

Calculated detection efficiencies for the pair of scattered protons as a function of their transverse momenta (p^{1,T}, p^{2,T})

- Momentum conservation in the transverse momentum plane
- Scattered proton momenta (horizontal axis)
- Scattered proton AND central hadrons (vertical axis)
- Pile-up from elastic: vertical band in TB and BT configurations

Frigyes Nemes, TOTEM - CMS

- 1st observation of parabolic minimum in the proton azimuthal angle difference
- Except at very low and high

Model fit results

Form factors

- Pomeron meson coupling
- Proton Pomeron

Models

- Empirical
- One-channel (proton in ground state)
- Two-channel (p + N*, two diff. eigenstates of the proton)
- Remarkable agreement with DIME ("soft model 1"), although with unexpected eigenstatepomeron coupling (γ₁ ≈ γ₂)

$F(\hat{t})$

$$) = \begin{cases} \exp(b_{\exp}(\hat{t} - m^2)) & (\text{exponential}), \\ \exp(b_{\text{ore}}[a_{\text{ore}} - \sqrt{a_{\text{ore}}^2 - (\hat{t} - m^2)}]) & (\text{Orear-like}), \\ 1/(1 - b_{\text{pow}}(\hat{t} - m^2)), & (\text{power-law}). \end{cases}$$

Parameter	Exponential	Orear-type	Power-law	DIME 1 / 2
empirical model				
$a_{\rm ore}[{\rm GeV}]$		0.735 ± 0.015	_	
$b_{\text{exp/ore/pow}}[\text{GeV}^{-2 \text{ or } -1}]$	1.084 ± 0.004	1.782 ± 0.014	1.356 ± 0.001	
$B_{\rm I\!P} [{ m GeV}^{-2}]$	3.757 ± 0.033	3.934 ± 0.027	4.159 ± 0.019	
$\chi^2/{ m dof}$	9470/5796	10059/5795	11409/5796	
one-channel model				
$\sigma_0[mb]$	34.99 ± 0.79	27.98 ± 0.40	26.87 ± 0.30	
$\alpha_P - 1$	0.129 ± 0.002	0.127 ± 0.001	0.134 ± 0.001	
$lpha_P' \; [{ m GeV}^{-2}]$	0.084 ± 0.005	0.034 ± 0.002	0.037 ± 0.002	
$a_{\rm ore}[{\rm GeV}]$	_	0.578 ± 0.022	—	
$b_{\text{exp/ore/pow}}[\text{GeV}^{-2 \text{ or } -1}]$	0.820 ± 0.011	1.385 ± 0.015	1.222 ± 0.004	
$B_{\rm I\!P} [{ m GeV}^{-2}]$	2.745 ± 0.046	4.271 ± 0.021	4.072 ± 0.017	
$\chi^2/{ m dof}$	7356/5793	7448/5792	8339/5793	
two-channel model				
$\sigma_0[mb]$	20.97 ± 0.48	22.89 ± 0.17	23.02 ± 0.23	23 / 33
$\alpha_P - 1$	0.136 ± 0.001	0.129 ± 0.001	0.131 ± 0.001	0.13 / 0.115
$lpha_P' \; [{ m GeV}^{-2}]$	0.078 ± 0.001	0.075 ± 0.001	0.071 ± 0.001	0.08 / 0.11
$a_{\rm ore}[{\rm GeV}]$		0.718 ± 0.012	—	
$b_{\text{exp/ore/pow}}[\text{GeV}^{-2 \text{ or } -1}]$	0.917 ± 0.007	1.517 ± 0.008	0.931 ± 0.002	0.45
$\Delta a ^2$	0.070 ± 0.026	-0.058 ± 0.009	0.042 ± 0.011	$-0.04 \ / \ -0.25$
$\Delta\gamma$	0.052 ± 0.042	0.131 ± 0.018	0.273 ± 0.023	0.55 / 0.4
$b_1 \; [GeV^2]$	8.438 ± 0.108	8.951 ± 0.041	8.877 ± 0.040	8.5 / 8.0
$c_1 \left[GeV^2 \right]$	0.298 ± 0.012	0.278 ± 0.004	0.266 ± 0.006	0.18 / 0.18
d_1	0.472 ± 0.007	0.465 ± 0.002	0.465 ± 0.003	0.45 / 0.63
$b_2 \; [\mathrm{GeV}^2]$	4.982 ± 0.133	4.222 ± 0.052	4.780 ± 0.060	4.5 / 6.0
$c_2 \; [\mathrm{GeV}^2]$	0.542 ± 0.015	0.522 ± 0.006	0.615 ± 0.006	0.58 / 0.58
d_2	0.453 ± 0.009	0.452 ± 0.003	0.431 ± 0.004	0.45 / 0.47
χ^2/dof	5741/5786	6415/5785	7879/5786	

- TOTEM elastic measurements at LHC at 2.76, 7, 8 and 13 TeV! (with 0.9 and 13.6 TeV measurements in the pipeline)
- 13 TeV ρ measurement
 - O Coulomb normalization leading to independent total cross-section measurement
 - Evidence for t-channel exchange of colourless C-odd 3g compound (odderon)
- 2.76 TeV, differential cross-section measurement
 - $\odot~$ Confirming the dip in pp close in energy to the D0 ppbar data without dip
 - Neglecting energy difference, provides evidence for colourless C-odd 3g compound (odderon)
- 8 TeV, differential cross-section measurement
- 13 TeV, detailed study of non-resonant CEP of hadron pairs (central exclusive π⁺π⁻, K⁺K⁻ resonance study will be published soon)

Thank you for your attention !

Backup slides

Schematic layout of the magnet lattice at IP5:

Note on proton kinematics reconstruction & optics imperfections

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$.
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$ •
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad .
- Magnetic field harmonics, $\sigma(B)/B \approx 10^{-4}$.
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$.
- Magnet positions Δx , $\Delta y \approx 100 \ \mu m$

$$t(v_x, L_x, L_y, ..., p) = -p^2 \cdot \left(\Theta_x^{*2} + \Theta_y^{*2}\right)$$

\rightarrow Precise model of the LHC optics is indispensable!

Novel method from TOTEM:

- Use **measured** proton data from RPs •
- Based on kinematics of elastic candidates •
- Published in New Journal of Physics •
- http://iopscience.iop.org/1367-2630/16/10/103041/ ٠

Perturbed optics nominal

6

0.39 %

4.2 %

Mean

RMS

- Large O(20 %) but well measurable, inefficiencies
- Two data sets DS1 and DS2
- Compatibility per diagonal per data set within uncertainties required

Correction [%]	DS1		DS2	
	Diag. 1	Diag. 2	Diag. 1	Diag. 2
$\mathcal{I}_{3/4}$	25.86 ± 0.2	22.04 ± 0.2	20.34 ± 0.1	21.37 ± 0.1
$\mathcal{I}_{2/4}$	19.91 ± 0.2	16.16 ± 0.2	16.09 ± 0.2	17.11 ± 0.2
$\mathcal{I}_{2/4\mathrm{diff.}}$	2.38 ± 0.05	1.61 ± 0.04	1.33 ± 0.02	1.5 ± 0.02
$\eta_{ m d}$	80.93 ± 0.01		99.95 ± 0.01	
$\eta_{ m tr}$	99.9 ± 0.1		$99.9~\pm~0.1$	

• Total correction per event:

$$f(\boldsymbol{\theta}^*, \boldsymbol{\theta}_y^*) = \frac{1}{\boldsymbol{\eta}_{\rm d}} \boldsymbol{\eta}_{\rm tr} \cdot \frac{\mathcal{C}(\boldsymbol{\theta}^*, \boldsymbol{\theta}_y^*)}{1 - \mathcal{I}} \cdot \frac{1}{\Delta t}$$

$$\mathcal{I} = \mathcal{I}_{3/4}(\boldsymbol{\theta}_{y}^{*}) + \mathcal{I}_{2/4} + \mathcal{I}_{2/4\,\mathrm{diff}}$$

- Result confirms with unprecedented precision at the TeV scale the dip structure (**R = max / dip**)
- Hadronic elastic @ TeV sqrt(s) dominated by t-channel exchange of colourless gluon states
- 2 (or even) gluon exchange (C = +): "Pomeron" (~ mostly imaginary) \Rightarrow pp vs ppbar invariance
- 3 (or odd) gluon exchange (C = -): "Odderon" (expected ~ real) ⇒ different sign for pp and ppbar
- How observe indications of 3-gluon exchange?
- At low t: by measuring rho = real/imaginary amplitude Coulomb-nuclear interference
- At dip: 2g exchange (~ imaginary) suppressed \Rightarrow 3g exchange (~ real) observable

- Energy loss measurement with CMS tracker
- Identification of $\pi^+\pi^-$, K^+K^- (and $\overline{p}p$)

