D0-TOTEM Odderon observation: an update

References:

DO & TOTEM collaborations, CERN-EP 2020-236, FERMILAB PUB-20-568-E (CERN & Fermilab approval December 2020), PRL 127 (2021) 062003; K. Österberg on behalf of DO & TOTEM collaborations, ArXiv: 2202.03724 For details on TOTEM elastic measurements see F. Nemes talk

Elastic scattering: multi-gluon exchanges

Elastic hadron-hadron scattering: colourless multi-gluon t-channel exchanges

 $\begin{array}{ll} \mbox{dominates at low |t|,} & \mbox{suppressed,} \\ &\approx Im[A_{\rm el}^{\rm had}] & \mbox{mainly } Re[A_{\rm el}^{\rm had}] \mbox{ contr.} \\ & \mbox{identical for } pp \ \& p \bar{p} \ \mbox{different sign for } pp \ \& p \bar{p} \end{array}$

@ TeV-scale: gluon exchanges dominate \Rightarrow $pp \& p\bar{p}$ difference due to C-odd exchange

gluonic compounds: colourless gluon combinations bound sufficiently strongly not to interact with individual p/\bar{p} partons

odderon/*C*-odd gluon compound:

- C-odd exchange contribution predicted in Regge-theory
 L. Lukaszuk & B. Nicolescu, Lett.
 Nuovo Cim. 8 (1973) 405
- confirmed in QCD as C-odd exchange of 3 (or odd #) gluons at leading order
 J. Bartels, Nucl. Phys. B 175 (1980) 365; J. Kwiecinski & M. Praszlowics Phys. Lett. B 94 (1980) 413.
- searched for last 50 years,
 until recently no convincing
 experimental evidence

Elastic pp differential cross-section

3

$d\sigma_{el}/dt$ measurements in $pp/p\overline{p}$

bump NOT expt'ly visible (open circles extrapolations)

- Diffractive minimum ("dip") & secondary maximum ("bump") clearly observable in pp (contrary to $p\bar{p}$)
- $\sim pp \, d\sigma_{el}/dt$ in dip-bump region well described by $h(t) = a_1 e^{-a_2|t|^2 - a_3|t|} + a_4 e^{-a_5|t|^3 - a_6|t|^2 - a_7|t|}$

Data-driven estimates

 $d\sigma/d$

- ✓ Short (~8 % of fit range) extrapolation of the 8 characteristic $pp \ d\sigma_{el}/dt$ points to \sqrt{s} = 1.96 TeV.
- Interpolation of $pp \ d\sigma_{el}/dt$ characteristic points using h(t) (see previous slide) allows comparison with D0 measured $p\bar{p} \ d\sigma_{el}/dt$.
- Only 3-4 \sqrt{s} points limits formulas to 2 parameters.
- Excellent fits for all characteristic points.
- Alternate functions (with other \sqrt{s} powers) give compatible results.

σ_{tot}^{pp} extrapolation for optical point (OP)

- $\sigma_{tot}^{pp} \text{ (and } d\sigma_{el}^{tot}/dt \big|_{t=0} \text{) at } \sqrt{s} = 1.96 \text{ TeV extrapolated from TOTEM } \sigma_{tot}^{pp} \text{ at } \sqrt{s} = 2.76, 7, 8 \text{ and } 13 \text{ TeV using formula: } \sigma_{tot} = a \log^2 \sqrt{s} ([\text{TeV}]) + b$

- $\sigma_{tot}^{pp}(\sqrt{s} = 1.96 \text{ TeV}) =$ $82.7 \pm 3.7 \text{ mb} \Rightarrow$ $d\sigma_{el}^{pp}/dt \Big|_{t=0} =$ $357 \pm 26 \text{ mb/GeV}^2$
- Short (~8 % of fit range) extrapolation of σ_{tot}^{pp} to \sqrt{s} = 1.96 TeV
- Only 4 \sqrt{s} data points limits formulas to 2 parameters.

•

- ~ ~2 TeV close to boundary between $\log^2 \sqrt{s} \& \log \sqrt{s}$ dominant regions.
- All alternative extrapolations fall well within estimated uncertainty.

•

χ^2 for $pp \& p\overline{p}$ comparison

As a result of interpolation, extrapolated $pp \ d\sigma_{el}/dt$ values at neighbouring D0 |t|-values strongly correlated \Rightarrow full covariance matrix (with vital diagonal protection) included in χ^2 for $pp \ p \overline{p}$ comparison

$$\chi^2 = \sum_{\text{points } i,j} \left\{ \left(\frac{d\sigma_{el,i}^{pp}}{dt} - \frac{d\sigma_{el,i}^{p\bar{p}}}{dt} \right) C_{i,j}^{-1} \left(\frac{d\sigma_{el,j}^{pp}}{dt} - \frac{d\sigma_{el,j}^{p\bar{p}}}{dt} \right) \right\} + \frac{(A - A_0)^2}{\sigma_A^2} + \frac{(B - B_0)^2}{\sigma_B^2} \approx 0$$

where $C_{i,j}$ covariance matrix and $A \otimes B$ two contraints \Longrightarrow 8 points, 6 d.o.f.

- A = normalization OP(pp) = QP(pp) (also expt'ly. true within uncertainties)
- B = elastic slope[B(pp)] = B(pp)] (also expt'ly true within uncertainties)
- Assume pp OP = $p\bar{p}$ OP (experimentally true within uncertainties), valid as long as maximal possible C-odd ("maximal odderon model"), secondary Reggeon effects & $pp/p\bar{p} \rho$ differences included as systematics (2.9 %).

a) D0 & TOTEM covariance matrices diagonalized separately b) first term of χ^2 estimated using the sum of the two diagonalized matrices

 $\chi^2 = 23.64$ (d.o.f. = 6) $\Rightarrow pp \& p\bar{p} d\sigma_{el}/dt$ differ by 3.4 σ at \sqrt{s} = 1.96 TeV

Comparison of *pp* & *pp* **cross section**

Cui et al. (*PLB 839 (2023) 137826*) aims at reproducing the DO-TOTEM analysis obtaining significances of 2.2-2.6 σ : fails on 2.76 TeV bump location (@ too low |t|), adds ISR pp data (involves secondary Reggeons?) & full correlation of normalisation error not taken into account.

Updated χ^2 for $pp \& p\overline{p}$ comparison

TOTEM-D0 preparing a longer (more detailed) paper that also will include an updated version of the pp & $p\bar{p}$ comparison at \sqrt{s} = 1.96 TeV

- \checkmark Improved TOTEM pp covariance matrix (with refined diagonal protection)
- \checkmark MC method for combining the diagonal D0 $p\bar{p}$ covariance matrix (Gaussian) with the non-diagonal TOTEM pp covariance matrix (Cholesky)
- Explicit affine transformation assuring pp & pp
 equality of elastic slope B & integrated cross section A in χ^2 calculation
- D0 cross-sections placed at cross section weighted t-positions

$$\chi^{2} = \sum_{\text{points } i,j} \left\{ \left(\frac{d\sigma_{el,i}^{pp}}{dt} - \frac{d\sigma_{el,i}^{p\bar{p}}}{dt} \right) C_{i,j}^{-1} \left(\frac{d\sigma_{el,j}^{pp}}{dt} - \frac{d\sigma_{el,j}^{p\bar{p}}}{dt} \right) \right\} + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}$$

 \Rightarrow a small increase of significance in $pp \& p\bar{p}$ comparison at $\sqrt{s} = 1.96$ TeV in ary Dreliminary

Significance confirmed with a MC based Kolmogorov-Smirnov test, including data point correlations, combined with normalisation using Stouffer method

More improvements of the $pp \& p\bar{p}$ comparison at \sqrt{s} = 1.96 TeV to come!

TOTEM & ATLAS σ_{tot} comparison

- 13 TeV TOTEM σ_{tot}^{pp} = 110.6 ± 3.4 mb ✓ direct counting experiment (needs correction for low mass diffraction)
- \sim 13 TeV TOTEM σ_{tot}^{pp} = 110.3 \pm 3.5 mb \sim
- ✓ need precise luminosity determination

Fully independent datasets & methods: $d\sigma_{\rm el}/dt$ normalisation from $\sigma_{\rm Coulomb}$ 2.20 , $\sigma_{tot,TOTEM}^{pp,13 TeV} = 110.5 \pm 2.4 \text{ mb}$ 13 TeV ATLAS $\sigma_{tot}^{pp} = 104.7 \pm 1.1 \text{ mb} 4$ difference $16\pi 1 (dN_{el})$ $e^{nCe}_{\sigma_{tot}^2} = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$

 $\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$

Trend same as @ \sqrt{s} = 7 & 8 TeV, essentially only a normalisation difference!

Not whole story: TOTEM has 2-4 consistent σ_{tot}^{pp} measurements using (slightly) different techniques /energy vs. 1 measurement/energy using same technique for ATLAS

Measuring σ_{tot} & low mass diffraction

✓ NB! Any σ_{tot}^{pp} measurement makes assumptions e.g. elastic hadronic slope used for dN_{el}/dt extrapolation to t = 0 ($e^{-B|t|}$ vs. $e^{-B|t|-C|t|^2-D|t|^3}$) and treatment of Coulomb & CNI (fitted/subtracted/ignored depending on |t|-range) easily resulting in O(1 mb) changes \Rightarrow not viable to claim precision $\leq \sim 1.5 \text{ mb}$

difference due to non-measured low mass diffraction in N_{inel} ?

(P. Grafström, ArXiv: 2209.01058)

13 TeV TOTEM correction: 5.3 \pm 2.6 mb \rightarrow 8.2 \pm 1.4 mb \Rightarrow

smaller σ_{tot}^{pp} ATLAS-TOTEM difference but only slightly in # of σ 's & no explain. of $\sigma_{tot,C norm}^{pp}$ Also if full σ_{tot}^{pp} difference low mass diffraction \Rightarrow correction \geq ATLAS ($\sigma_{incl}^{ALFA} - \sigma_{inel}^{central}$)!

Regarding ATLAS σ_{tot}^{pp} : How reliable are absolute luminosity calibrations (precision @ \sqrt{s} = 13 TeV: 2.15 %) made in van de Meer scans at β^* = 11 m for the luminosity of beams at β^* = 2500 m (with very different LHC optics and an interaction point transverse size 15 times larger)?

TOTEM ρ in pp at $\sqrt{s} = 13$ TeV

- $\sim @\sqrt{s} = 13 \text{ TeV}: \rho^{pp} = 0.10 \pm 0.01 / 0.09 \pm 0.01$ (TOTEM, EPJC 79 (2019) 785)
- Models (COMPETE, Durham, Block-Halzen) unable to describe TOTEM ρ & σ_{tot}^{pp} measurements at 3.4-4.6 σ level without adding odderon exchange
- \sim Alternative non-excluded explanation for low ρ^{pp} : slower rise of $\sigma_{tot}^{pp} @ \sqrt{s} > \sqrt{s}_{LHC}$

ATLAS confirmed: ρ^{pp} @ 13 TeV = 0.098 ± 0.011 (EPJC 83 (2023) 441)

TOTEM Somments about 13 TeV ρ measurements \mathbb{P}

Main sensitivity to ρ only in limited |t|-range in CNI region (only few data points). ✓ Fits have to be made in steps (hadronic amplitude, Coulomb amplitude & ρ) in separate |t|-regions to avoid points without ρ sensitivity to influence ρ measurement. Not properly taken into account by V. A. Petrov and N.P. Tkachenko, PRD 106 (2022) 054003 & A.Donnachie and P.V. Landshoff, PLB 798 (2019) 135008 + PLB 831 (2022)137199

TOTEM (/ATLAS?) data described within 1σ and $\rho = 0.14$ for pp at 13 TeV without ✓ odderon (A. Donnachie & P.V. Landshoff, PLB 798 (2019) 135008 & PLB 831 (2022)137199): Are not taking the Coulomb phase into account ($\Delta \rho = +0.02$)

Conclusions

- Issues & objections raised regarding D0-TOTEM $p\bar{p} \& pp$ elastic $d\sigma/dt$ comparison at \sqrt{s} = 1.96 TeV as well as TOTEM 13 TeV ρ & total cross section measurements addressed
- □ Updated $p\bar{p} \& pp$ elastic $d\sigma/dt$ comparison at \sqrt{s} = 1.96 TeV show a small increased significance for odderon
- Tension between TOTEM & ATLAS total cross section @ \sqrt{s} = 13 TeV
- E. Leader, Discovery of the odderon, Nature Review Physics (2021): "In a recent article in Physical Review Letters the CERN TOTEM and the Fermilab DØ collaborations reported the discovery of the odderon. This result is based mainly on an almost model-independent extrapolation down in the energy of the pp differential cross-sections measured at the LHC and a comparison with the pp differential cross-section measured at the Tevatron. The significant difference in the shape of differential cross-sections at this ultra-high energy is at last convincing evidence for the existence of the odderon"