Structure of the real amplitude in forward pp scattering at the LHC

Anderson Kendi Kohara

Faculty of Physics, AGH-University of Science and Technology NCN GRANT 2020/37/K/ST2/02665

52nd ISMD 21/08 -26/08/2023

Iceland Liechtenstein Norway grants

Some challenges:

• Seemingly simple kinematics but complicated dynamics

1

- Non-perturbative phenomenon
- Long range force interplays with short ranged
- Experimental gap among energies
- Differential cross sections with fluctuations (and/or) large uncertanties
- Lack of cross-symmetric experiments at the same energies

Relativistic Elastic Scattering

Mandelstam variables

$$s = (p_1 + p_2)^2$$
$$t = (p_1 - p_3)^2$$
$$u = (p_1 - p_4)^2$$

Coulomb phase

H. Bethe, Ann. Phys. (N.Y.) 3, 190 (1958) 27;
L.D. Solov'ev, JETP 22, 205 (1966) 26;
G.B. West, D.R. Yennie, Phys. Rev. 172 (5), 1413 (1968);
V. Kundrat and M. Lokajcek, Phys. Lett. B 611 (2005) 102;
R. Cahn, Z. Phys. C 15 (1982) 253.

Scattering amplitudes

AKK, E. Ferreira, T. Kodama and M. Rangel, Eur. Phys. J. C 77 (2017) 12, 877

-t (GeV²)

Basic physical quantities we are interested in:

Forward quantities (t=0)

Optical theorem $\sigma_{tot} = 4\pi (\hbar c)^2 T_I^N(s, 0)$

Ratio of real and imaginary amplitudes
$$\rho = \frac{T_R^N(s, 0)}{T_I^N(s, 0)}$$

effective slopes

F

$$B_I^{eff} = \frac{2}{T_I^N(s,t)} \frac{\mathrm{d}}{\mathrm{d}t} T_I^N(s,t) \Big|_{t=0} = (B_I - 2\mu_I)$$
$$B_R^{eff} = \frac{2}{T_R^N(s,t)} \frac{\mathrm{d}}{\mathrm{d}t} T_R^N(s,t) \Big|_{t=0} = \left(B_R - \frac{2\mu_R}{\rho}\right)$$

$$B_{I}^{eff} = \frac{\rho^{2} \left(B_{R} - \frac{2\mu_{R}}{\rho} \right) + (B_{I} - 2\mu_{I})}{\rho^{2} + 1}$$

Differential cross section (s,t) dependent

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = |T(s,t)|^2$$

Why the parameters μ_R and μ_I ?

 μ_I

The dip of the $\frac{d\sigma}{dt}$ is due to the passage of the imaginary amplitude through zero

 $(1 - \mu_I t_{dip}) = 0$ Once μ_I is determined we know the dip position

...But this is not our concern in the present work!!!

μ_R

Theorem 1: ""If, for sufficiently large values of ξ , $\sigma(\xi)$ is non decreasing and approaches infinity as $\xi \rightarrow \infty$. Then Re F (ξ) is positive for all sufficiently large values of ξ "" $\xi = (s-u)/2$

A. Martin and T. T. Wu, Phys. Rev. D 97 (2018) 1, 014011

Theorem 2: "We show that if for fixed negative (physical) square of the momentum transfer, the differential cross-section $d\sigma/dt$ tends to zero and if the total cross-section tends to infinity, When the energy goes to infinity, the real part of the even signature amplitude cannot have a constant sign near t=0.""

A. Martin, Phys. Lett. B 404, 137 (1997).

To sumarize, the real amplitude in the forward range at high energies is positive, and at some point within the diffractive cone it crosses zero.

 $(\rho - \mu_R t_{zero}) = 0$

A forward description in terms of analytic functions

Following A. Martin (1977)

 $T^N(E,t) \sim i C E(log(E) - \pi i/2)^2 f(\tau)$

with $\tau = t \log^2(E)$ the scaling variable (real)

E = (s - u)/4m

 $f(\tau) = T^N(E,t)/T^N(E,0)$

geometric scaling function

A. Martin, Lett. Nuovo Cim. 7 (1973) 811.

We extended the idea to a complex scaling variable $\tau' \sim t(log(E) - \pi i/2)^2$

and as a consequence in the limit of large s we obtain $f(\tau') = e^{\tau'} = e^{\Omega_R(s,t) + \Omega_I(s,t)}$

$$T_R^N(s,0) = s[\beta(P_1 + 2H\log s) - R_1 s^{-\eta_1} \sin(\eta_1 \beta) \quad \mp R_2 s^{-\eta_2} \cos(\eta_2 \beta)]$$

 $T_I^N(s,0) = s[P + P_1 \log s + H(\log^2 s - \beta^2) + R_1 s^{-\eta_1} \cos(\eta_1 \beta) \pm R_2 s^{-\eta_2} \sin(\eta_2 \beta)]$

$$\Omega_R(s,t) = [b_0 + b_1 \log s + b_2 (\log^2 s - \beta^2) + b_3 s^{-\eta_3} \cos(\eta_3 \beta)]t$$

 $\Omega_{I}(s,t) = -[b_{1}\beta + 2b_{2}\beta \log s - b_{3}s^{-\eta_{3}}\sin(\eta_{3}\beta)]t$

The complex amplitude is

AKK., J. Phys. G 46 (2019) 12, 125001

$$\begin{pmatrix} T_R^N(s,0) \\ T_I^N(s,0) \end{pmatrix} = s\sigma_{\mp}(s) \begin{pmatrix} \cos\Omega_I (s,t) & -\sin\Omega_I (s,t) \\ \sin\Omega_I (s,t) & \cos\Omega_I (s,t) \end{pmatrix} \begin{pmatrix} \rho_{\mp}(s) \\ 1 \end{pmatrix} e^{\Omega_R(s,t)}$$

To describe the data we add to the real part a shape $G_{\mp}^{R}(s,t) = \sigma_{\mp} \frac{s t}{\Lambda^{2} - t} e^{\Omega_{R}(s,t)}$

 $T_R^N(s,t) \rightarrow T_R^N(s,t) + G_{\mp}^R(s,t)$

And the differential cross section is

 $\frac{d\sigma}{dt} = s^2 \,\sigma_{\mp}^2 (\rho_{\mp}^2 + 1) e^{2\Omega_R(s,t)} + 2 \,s \,\sigma_{\mp} \,G_{\mp}^R(s,t) [\rho_{\mp} \cos\Omega_I \ (s,t) - \sin\Omega_I \ (s,t)] \,e^{\Omega_R(s,t)} + \left|G_{\mp}^R(s,t)\right|^2$

	paran	derived quantities					
\sqrt{s}	H	η_3	σ	ρ	B	$\sigma_{\rm elas.}$	χ^2/ndf
(GeV)	(mb)		(mb)	-	(GeV^{-2})	(mb)	
pp							
23.882	$0.311 {\pm} 0.002$	0.16 (fix)	39.57	0.034	11.77	7.27	90.7/62
30.6	0.292 ± 0.001	0.1522 ± 0.001	39.79	0.049	12.23	7.03	94.1/68
44.7	0.291 ± 0.0004	$0.144 \; (fix)$	41.51	0.077	13.12	7.08	87.3/67
52.8	$0.2894{\pm}0.0003$	0.1383 ± 0.0003	42.41	0.088	13.26	7.30	245/88
62.5	$0.2812 {\pm} 0.0005$	0.1304 ± 0.0004	42.76	0.092	13.15	7.49	111.1/62
200*	0.2887 (fix)	0.106 (fix)	52.05	0.133	14.61	9.94	-
900*	0.2887 (fix)	0.085 (fix)	68.38	0.145	16.43	15.15	-
2760*	0.2887 (fix)	0.076 (fix)	84.04	0.143	18.23	20.51	-
7000	$0.2895 {\pm} 0.0003$	0.0735 ± 0.0002	99.51	0.138	20.39	25.57	74.4/59
7000	$0.2764 {\pm} 0.0002$	0.0707 ± 0.0001	95.43	0.136	19.90	24.11	42.9/33
8000	$0.2903 {\pm} 0.0001$	0.0694 ± 0.0001	102.12	0.137	19.65	27.99	72.5/58
8000	$0.2735 {\pm} 0.0001$	0.0698 ± 0.0001	96.74	0.135	20.11	24.51	28.8/25
13000	0.2913 ± 0.0001	0.0673 ± 0.0001	111.43	0.134	20.99	31.11	149.4/126
14000*	0.2887 (fix)	0.067 (fix)	112.65	0.132	21.13	31.15	-
57000*	0.2887 (fix)	0.063 (fix)	141.59	0.123	24.19	42.93	-
$p\bar{p}$							
30.4	0.2994 ± 0.003	0.15 (fix)	41.32	0.076	12.05	7.73	22.4/25
52.6	$0.2971 {\pm} 0.001$	0.138 (fix)	43.44	0.102	13.24	7.69	29.9/27
62.3	0.2938 ± 0.003	0.132 ± 0.004	44.13	0.107	13.32	7.89	19.9/15
540	0.2930 ± 0.0004	0.0901 ± 0.0003	62.95	0.145	15.65	13.52	164.9/97
1800	0.2706 ± 0.001	$0.0771 {\pm} 0.0004$	73.71	0.141	17.19	16.78	43.8/53

We leave two free parameters H and η_3

The real-Coulomb interference (very forward scattering)

As the energy increases the real nuclear amplitude also increases

Let $T_R(s,t)$ be the real part of the sum of the nuclear and Coulomb pp amplitudes,

$$T_R(s,t) \equiv T_R^N(s,t) + T_C(s) , \qquad (8)$$

then, for s large, if $T_R^N(s,t) > |T_C(t)|$ in a region $0 < |t| < |t_R|$ then $T_R(s,t)$ has two zeros,

$$T_R(s, t_{\xi_1}) = T_R(s, t_{\xi_2}) = 0, \quad 0 < |t_{\xi_1}| < |t_{\xi_2}| < |t_R|$$
(9)

AKK, Eur. Phys. J. C 83 (2023) 2, 126

Note: pp Coulomb amplitude is negative

The real nuclear amplitude is positive in the forward range (Martin's theorem)

A. Martin, Phys. Lett. B 404, 137 (1997).

As the energy increases the real nuclear amplitude also increases

Let $T_R(s,t)$ be the real part of the sum of the nuclear and Coulomb pp amplitudes,

$$T_R(s,t) \equiv T_R^N(s,t) + T_C(s) , \qquad (8)$$

then, for s large, if $T_R^N(s,t) > |T_C(t)|$ in a region $0 < |t| < |t_R|$ then $T_R(s,t)$ has two zeros,

$$T_R(s, t_{\xi_1}) = T_R(s, t_{\xi_2}) = 0, \quad 0 < |t_{\xi_1}| < |t_{\xi_2}| < |t_R|$$
(9)

AKK, Eur. Phys. J. C 83 (2023) 2, 126

How to observe the effects of the real part?

Subtracting the square of the imaginary part we have

$$\frac{\frac{d\sigma}{dt} - \pi(\hbar c)^2 |T_I^N|^2}{\pi(\hbar c)^2 |T_I^N|^2} = \frac{|T_R^N + T_C|^2}{|T_I^N|^2}$$

The so-called non-exponential behaviour can be a manifestation of the real amplitude

Zero of Martin (first zero of the real part)

AKK., J. Phys. G 46 (2019) 12, 125001

Is it possible to observe any dip due to the interplay between real and Coulomb amplitude?

 $T_R(s,t) + T_C(t) = 0$

Is it possible to observe any dip due to the interplay between real and Coulomb amplitude?

 $T_R(s,t) + T_C(t) = 0$

What about the relative Coulomb phase?

 $T_{total}(s,t) = T_R(s,t) + iT_I(s,t) + T_C(t)e^{i\alpha\Phi(s,t)}$

Similar results from adding Coulomb and Strong force eikonals R. Cahn, Z. Phys. C 15 (1982) 253.

$$T_{C+N}(s,t) = \frac{s}{4\pi i} \int d^2 b \, e^{iq \cdot b} \left[e^{2i(\chi_C + \chi_N)} - 1 \right]$$

$$T_C(t) = \frac{s}{4\pi i} \int d^2 b \, e^{iq \cdot b} \left[e^{2i\chi_C} - 1 \right]$$

$$T_{C+N}(s,t) = T_C(t) + T_N(s,t) + \frac{s}{4\pi i} \int d^2 b \, e^{iq \cdot b} \left[e^{2i\chi_C} - 1 \right] \left[e^{2i\chi_N} - 1 \right]$$

Relative Coulomb phase $\phi(s,t) = -\ln\left(\frac{-t}{s}\right) + \int_0^s \frac{dt'}{|t'-t|} \left[1 - \frac{F^N(s,t')}{F^N(s,t)}\right]$

Explicity

$$\phi(s,t) \sim -\left[\gamma + \ln\left(-\frac{Bt}{2}\right) + O(-Bt)\right]$$

AKK., E. Ferreira and M. Rangel, Phys.Lett.B 789 (2019) 1-6

No matter which prescription is used to represent the relative phase,

the presence of the Coulomb phase reduces the magnitude of ρ

"Entities must not be multiplied beyond necessity"

Illustration of William of Ockham (from Wikipedia)

Thank you!

Hadronic Collider Experiments

Intersecting Storage Rings-CERN, 1971–1984

Proton-Antiproton Collider(SPS)-CERN, 1981–1991

Tevatron-Fermilab, 1987–2011

Relativistic Heavy Ion Collider-BNL, 2000–...

Large Hadron Collider-CERN, 2009–...

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Assumptions

Analytic nuclear amplitude A(s, t, u)

Singularities have a physical meaning

Mandelstam plane

Crossing symmetric amplitudes $A_{pp}(s, t, u) = A_{p\bar{p}}(u, t, s)$

Unitarity of S matrix $SS^{\dagger} = 1$

Theorems **Optical theorem** $\sigma_T = \frac{1}{2|p|\sqrt{s}} \operatorname{Im} A(s,t)$ **Froissart theorem/bound** $\sigma_T(s) \le C \log^2\left(\frac{s}{s_0}\right)$ $s \to \infty$ **Pomeranchuck theorem** $\frac{\sigma_T^{pp}(s)}{\sigma_\pi^{p\bar{p}}(s)} \to 1 \qquad s \to \infty$