

52nd International Symposium on Multiparticle Dynamics (ISMD 2023)

Direct photon cross section and double-helicity asymmetry measurement at PH ENIX

Sanghwa Park (Jefferson Lab) for the PHENIX collaboration

RHIC Spin Program

- How do gluons contribute to the proton spin?
- What is the landscape of the polarized sea in the nucleon?
- What do transverse spin phenomena teach us about proton structure?

Proton spin decomposition

Proton Spin Decomposition

• (Quark + antiquark) spin contribution

$$\frac{1}{2}\int\!dx(\Delta u+\Delta \bar{u}+\Delta d+\Delta \bar{d}+\Delta s+\Delta \bar{s})$$

~30%. Well constrained by polarized DIS

• Gluon spin contribution
$$\Delta G = \int dx \Delta g(x)$$

Start to understand better with RHIC p+p data

Quark and gluon orbital angular momentum

Very little known, need to know 3D structure

Exploring gluon polarization at RHIC

- Access gluons at LO
- gg and qg dominant at RHIC kenematics

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \rightarrow \pi + X$	$\vec{g}\vec{g} ightarrow gg$	Δg	goor of
	ec q ec g ightarrow qg		3-Ce
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)
$ \vec{p}\vec{p} \to \gamma + X \vec{p}\vec{p} \to \gamma + \text{jet} + X $	$\begin{array}{c} \vec{q}\vec{g} \rightarrow \gamma q \\ \vec{q}\vec{g} \rightarrow \gamma q \end{array}$	$egin{array}{c} \Delta g \ \Delta g \end{array}$	ک ر
$\vec{p}\vec{p} \rightarrow \gamma\gamma + X$	$\vec{q}\vec{\vec{q}} ightarrow \gamma\gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \rightarrow DX, BX$	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	Josefe

Exploring gluon polarization at RHIC

Longitudinally polarized protons

 $P_{B(Y)}$: Proton beam polarization R: Relative luminosity L_{++}/L_{+-}

 $A_{LL} = \frac{1}{P_{P}P_{V}} \frac{N_{++} - KN_{+-}}{N_{++} + RN_{+-}}$

Exploring gluon polarization at RHIC

- Two workhorse measurements: π^0 and jets
- First experimental evidence of non-zero gluon contribution to the proton spin at x > 0.05:

 $\int_{0.05}^{1} dx \Delta g(x) = 0.2^{+0.06}_{-0.07} (Q^2 = 10 GeV^2) \quad \begin{array}{l} \text{DSSV14:} \\ \text{(included)} \end{array}$

DSSV14: Phys. Rev. Lett. 113 (2014) 012001 (included 2009 200 GeV data only)

- Confirmed non-zero gluon polarization at 510 GeV
- Mixed gg and qg contributions: Recent analysis by JAM collaboration showed that existing data cannot rule out negative Δg scenario [JAM, Phys. Rev. D 105, 074022 (2022)]

Direct photon measurements in $\vec{p} + \vec{p}$

- Theoretically clean interpretation: only sensitive to initial partonic hard process and doesn't involve strong interaction
- Direct photons are produced dominantly by quark-gluon Compton scattering at RHIC
 - linearly sensitive to gluon helicity distribution
- Proposed as a golden channel to study the gluon spin (RHIC Spin Proposal, 1992)
- Also:
 - Unpolarized cross section: test NLO pQCD applicability, constraint unpolarized gluon distribution
 - Transversely polarized p+p collisions: direct photon single spin asymmetry $A_{N.}$ Constraint the trigluon correlation function.

[PHENIX, Phys. Rev. Lett. 127, 162001 (2021)]

PHENIX Detector

- Central arms: $\Delta \phi = (\pi/2) \times 2$, $|\eta| < 0.35$
 - electrons, photons, π^0 , η , charged hadrons
 - Electromagnetic calorimeter (EMCal): fine granularity PbSc and PbGI detectors
 - Drift chamber (DC): charged particle tracking
- Beam-beam counter (BBC): luminosity monitor, minimum bias trigger

Analysis overview

- Photons detected by EMCal
- Effectively reduced BGs by π^0 decay tagging

contributions from patron

- \triangleright R: π^0 one photon missing ratio.
- A: Other hadrons' to π^0 's photon ratio.

rad

Isolation cut: reduced the BG
$$r_{cone} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.5$$
contributions from patron $E_{cone} < E_{\gamma} \cdot 10 \%$

Cross section results

Phys. Rev. Lett. 130, 251901 (2023)

- NLO pQCD calculation underestimates the inclusive cross section data at low pT
- Multiparton interaction and parton shower are important to consider for better describing the data
- With isolation criteria, the calculation consistent with the data.

Cross section results

- NLO pQCD calculation underestimates the inclusive cross section data at low pT
- Multiparton interaction and parton shower are important to better understand the data
- With isolation criteria, the calculation consistent with the data.

Direct photon ALL

Phys. Rev. Lett. 130, 251901 (2023)

- First published measurement of direct photon A_{LL}
- Compared with two scenarios for gluon spin
- Data consistent with the positive gluon spin contributions and disfavor the negative Δg scenario

Summary

- PHENIX has measured the first direct photon cross section and double-helicity asymmetry at 510 GeV
- Direct photon result provides an important input to improve our understanding of the polarized gluon distribution
 - Theoretically clean interpretation
 - Directly sensitive to the sign of the gluon spin
 - Data consistent with the positive gluon spin contribution