Diquark and heavy hadron production

Su Houng Lee

- Motivations
- Diquarks
- Ξ_c/D production in pp and heavy ion collisions

Acknowledgments:

Hyeongock Yun, Sungsik No, Sanghoon Lim, Taesoo Song, Juhee Hong, Aaron Park, Su Houng Lee, Benjamin Doenigus: arXiv:2308.06760

Charmed baryon

Baryon Octet

Contains both good and bad diquarks:→ Smaller contribution from good diquark

Baryon	Good diquark		n Good diquark Bad diquark		rk	
q=u,d	(qq)	(qs)	(ss)	(qq)	(qs)	(ss)
p, n	1/2	0	0	1/2	0	0
Λ	1/3	1/6	0	0	1/2	0
Σ	0	1/2	0	1/3	1/6	0
Ξ	0	1/2	0	0	1/6	1/3

Back to recent data

Both contain only good diquarks but different flavors

$$\left(\mathit{ud} \,
ight)_{\scriptscriptstyle S=0}$$
 - diquark in $\Lambda_{_{\mathcal{C}}}$

$$(us)_{s=0}$$
 - diquark in Ξ_c

What does quark model tell us about diquarks?

Naively, it seems strange that (us) diquark is more stable than (ud) diquark

A Quark Model perspectives

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Can fit baryon masses

$$V_{ij}^{C} = -\frac{\kappa}{r_{ij}} + \frac{r_{ij}}{a_0^2} - D,$$

$$V_{ij}^{CS} = \frac{\hbar^2 c^2 \kappa'}{m_i m_j c^4} \frac{e^{-(r_{ij})^2 / (r_{0ij})^2}}{(r_{0ij}) r_{ij}} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j,$$

$$\begin{split} \kappa &= 130.0 \,\mathrm{MeV} \,\mathrm{fm}, \quad a_0 = 0.0318119 \,(\mathrm{MeV^{-1} fm})^{1/2} \\ D &= 975 \,\mathrm{MeV}, \quad m_u = m_d = 335 \,\mathrm{MeV}, \\ m_s &= 652 \,\mathrm{MeV}, \quad m_c = 1940 \,\mathrm{MeV}, \\ \alpha &= 1.2499 \,\mathrm{fm^{-1}}, \ \beta = 0.0008314 \,(\mathrm{MeV} \,\mathrm{fm})^{-1}, \\ \gamma &= 0.00168 \,\mathrm{MeV^{-1}}, \ \kappa_0 = 185.144 \,\mathrm{MeV}. \end{split}$$

Dantiala	Experimental	Mass	Variational
Particle	Value (MeV)	(MeV)	Parameters (fm^{-2})
Λ	1115.7	1116.3	$a_1 = 3.0, a_2 = 2.9$
Λ_c	2286.5	2272.2	$a_1 = 3.1, a_2 = 3.9$
Σ_c	2452.9	2446.2	$a_1 = 2.2, a_2 = 4.0$
Σ_c^*	2517.5	2531.4	$a_1 = 2.0, a_2 = 3.5$
Σ	1192.6	1202.2	$a_1 = 2.2, a_2 = 3.3$
Σ^*	1383.7	1401.1	$a_1 = 1.9, a_2 = 2.5$
Ξ	1314.9	1331.8	$a_1 = 3.6, a_2 = 3.1$
[H]*	1531.8	1544.1	$a_1 = 3.1, a_2 = 2.3$
Ξ_c	2467.8	2474.2	$a_1 = 3.5, a_2 = 5.0$
Ξ_c^*	2645.9	2654.9	$a_1 = 2.6, a_2 = 4.6$
Ξ_c'	2579.2	2570.2	$a_1 = 2.8, a_2 = 5.2$
Ω_c	2695.2	2684.7	$a_1 = 3.9, a_2 = 6.1$
Ω_c^*	2765.9	2768.8	$a_1 = 3.6, a_2 = 5.3$
p	938.27	951.42	$a_1 = 2.5, a_2 = 2.5$
Δ	1232	1246.9	$a_1 = 1.8, a_2 = 1.8$

Color spin interaction

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Color-spin interaction for 2 body:

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K < 0 \quad \text{attraction;}$$

$$K > 0 \quad \text{repulsion}$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c}\right) \left(\sigma_{i}^{s} \sigma_{j}^{s}\right)$$

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{s} \lambda_{j}^{s}\right)$$

$$K = -\sum_{i < j$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \rightarrow 10 \text{ factors}$$

Color-spin vs Nuclear Force : A.Park, SHLee, Inoue, Hatsuda, EPJA 56(2020)3,93

NN force in SU(2) spin 1 vs spin 0 channel: comparison to lattice

 $K_{2-N} = K_{6-quark} - (K_{1N} + K_{1N})$ 100 600 500 V_C^{eff}(r) [MeV] 50 400 300 0 $\frac{K_{2-N}^{S=0}}{K_{2-N}^{S=1}} = 1.29 \quad \Rightarrow \text{ comparison}$ 200 -50 100 0.5 1.0 0.0 1.5 2.0 0 0.0 0.5 1.0 1.5 2.0 r [fm]

QCD HAL collaboration

H dibaryon channel: Flavor 1 vs Flavor 27

$$K_{m} = -\frac{1}{m_{i}m_{j}} \left(\lambda_{i}^{c}\lambda_{j}^{c}\right) \left(\sigma_{i}^{s}\sigma_{j}^{s}\right)$$
Isolated diquarks
good diquark
$$K_{m} = -8\frac{1}{m_{u}m_{d}}$$
bad diquark
$$K_{m} = \frac{8}{3}\frac{1}{m_{u}m_{d}}$$
Diquarks inside a Baryon
$$K_{m}^{\Lambda_{c}} = -8\frac{1}{m_{u}m_{d}}$$

 $m_u = m_d = 300 \text{ MeV}, \quad m_s = 500 \text{ MeV}, \quad m_c = 1500 \text{ MeV}, \quad m_b = 4700 \text{ MeV}$

Mass diff	$M_{\Delta} - M_N$	M_{Σ} - M_{Λ}	$M_{\Sigma c}$ - $M_{\Lambda c}$	$M_{\Sigma b} ext{-}M_{\Lambda b}$
Formula	290 MeV	77 MeV	154 MeV	180 MeV
Experiment	290 MeV	75 MeV	170 MeV	192 MeV

Color spin: Exotics

$$K_m = -\sum_{i < j}^n \frac{1}{m_i m_j} \Big(\lambda_i^c \lambda_j^c \Big) \Big(\sigma_i^s \sigma_j^s \Big)$$

H-dibaryon

$$K_{Flavor=1}^{Exact} = -\frac{5}{m_u^2} - \frac{22}{m_u m_s} + \frac{3}{m_s^2}$$

In SU(3) symmetric limit
$$K \rightarrow -\frac{24}{m_u^2}$$

Pentaquark

$$\begin{array}{c|c} ([3], 1/2) \\ SU(6)_{CS} \\ \hline Eigenvalue \end{array} \begin{pmatrix} -\frac{14}{m_{1}^{2}} - \frac{22}{m_{1}m_{5}} & -\frac{2}{\sqrt{3}m_{1}^{2}} - \frac{2}{\sqrt{3}m_{1}m_{5}} \\ -\frac{2}{\sqrt{3}m_{1}^{2}} - \frac{2}{\sqrt{3}m_{1}m_{5}} & -\frac{46}{3m_{1}^{2}} + \frac{26}{3m_{1}m_{5}} \end{pmatrix} \\ F \\ \hline Eigenvalue & [21] & [421^{3}] \\ -\frac{8}{2}(\sqrt{31} + 8), \frac{8}{2}(\sqrt{31} - 8) \\ \hline \\ LHCb \ discovery \ \rightarrow & (udsc\overline{c})_{I=0, \ S=1/2} \quad \Lambda + J \ /\psi \\ \hline Pc \ (Lipkin \ 87) \ \rightarrow & (uuds\overline{c})_{I=1/2, \ S=1/2} \end{array}$$

Park, Cho, SHL, PRD99(2019) 010087

Tetraquark Tcc

U

0

$$\mathbf{C} = \begin{pmatrix} -8\frac{1}{m_q^2} + \frac{8}{3}\frac{1}{m_c^2} + \frac{32}{3}\frac{1}{m_cm_q} & -8\sqrt{2}\frac{1}{m_cm_q} \\ -8\sqrt{2}\frac{1}{m_cm_q} & -\frac{4}{3}\frac{1}{m_q^2} + 4\frac{1}{m_c^2} + \frac{32}{3}\frac{1}{m_cm_q} \end{pmatrix}$$

Back to recent data and color-spin interaction

$$(ud)_{S=0}$$
 - diquark in Λ_c $K_m = -\frac{8}{m_u m_d}$

Stronger color-spin attraction

$$(us)_{S=0}$$
 - diquark in Ξ_c $K_m = -\frac{8}{m_u m_s}$

13

 \sim

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i < j}^{n} \left(\lambda_i^c \lambda_j^c \right) V_{ij}^C \left(r_{ij} \right) - \sum_{i < j}^{n} \frac{\left(\lambda_i^c \lambda_j^c \right) \left(\sigma_i \sigma_j \right)}{m_i m_j} V_{ij}^{SS} \left(r_{ij} \right)$$

Color-Color interaction is not important for short range N-N interaction

$$\sum_{i

$$= 0 - \frac{8}{3} \left(N_{B_{1}} + N_{B_{2}}\right) = \sum_{i

$$= \left(1 + \frac{1}{3}\right) + \left(4 + \frac{1}{3}\right)$$$$$$

Coulomb interaction: heavier particles will have larger Coulomb attraction

$$H_{cc} = \dots + \lambda_i^c \lambda_j^c \left(\frac{g}{r_{ij}}\right) + \dots \qquad r \approx \frac{1}{mg^2}, \qquad E_c \approx -mg^4$$

Solving for diquark states in the quark model with vacuum parameters.

			uark ¹¹ q1	<i>mq</i>
Diquark	Mass(MeV)	Binding $energy(MeV)$	Size(fm)	
ud	680.3	10.22	0.761	
us	970.7	-16.30	0.714	
uc	2244.8	-30.23	0.700	

Binding energy	=M _{diquark}	$-m_{q1}$	$-m_{q2}$
----------------	-----------------------	-----------	-----------

Contribution	ud	us	uc
$m_u + m_q - \frac{1}{2}D$	182.5	499.5	1787.5
$\sum_{i=1}^{2} \frac{\mathbf{p}_{i}^{2}}{2m_{i}}$	383.6	329.9	265.8
V^C	267.1	236.6	227.5
V^{CS}	-152.9	-95.34	-36.0
Total	680.3	970.7	2244.8

Including color-color interaction (us) diquark is more attractive than (ud) diquark

At Finite temperature

Finite temperature potential

$$V_{ij}^{C} = -\kappa \left[m_{D} + \frac{e^{-m_{D}r_{ij}}}{r_{ij}} \right] + \frac{1}{a_{0}^{2}} \left[\frac{2}{m_{D}} - \frac{e^{-m_{D}r_{ij}}(2+m_{D}r_{ij})}{m_{D}} \right] - D_{i}$$

Use thermal quark masses used

$$m_{u,d} = 300 \text{ MeV}, \quad m_s = 400 \text{ MeV}$$

(us) diquark is more attractive than (ud)

		$B_{(us)} = \mathbf{M}_{(us)diquark} - m_u - m_s$			
	Type	$B_{(us)} - B_{(ud)}$	$m_{us}(MeV)$	Size(fm)	
At $T = 0 \longrightarrow$	Scheme 1	-26.52	970.7	0.714	
	Scheme 2	-11.14	710.5	0.753	
	Scheme 3	-9.67	673.2	0.800	
At $T = 181 \text{ MeV}$	Scheme 4	-7.81	613.8	0.889	

Effects of Diquarks in Ξ_c/D production

Strong (us) diquark correlation

- → Enhanced Ξ_c production.
- \rightarrow Smaller effects on Hyperon production

Model it through the presence of (us) diquarks in the hadronization

 \rightarrow Use coalescence model

Model diquark P_{T} distribution

Blast-wave fit to ALICE data

$$\frac{1}{m_{\rm T}} \frac{\mathrm{d}N}{\mathrm{d}m_{\rm T}} \propto m_{\rm T} \int_0^R I_0 \left(\frac{p_{\rm T} \sinh \rho}{T_{kin}}\right) K_1 \left(\frac{m_{\rm T} \cosh \rho}{T_{kin}}\right) r \,\mathrm{d}r$$

$$\rho = \tanh^{-1} \beta_r \qquad \beta_r = \left(\frac{r}{R}\right)^n \beta_s,$$

Collision system	$\langle \mathrm{d}N_{\mathrm{c}h}/\mathrm{d}\eta\rangle$	T_{kin} (GeV)	$\langle \beta \rangle$	n
$pp \ 13 \ TeV \ MB$	6.88	0.184	0.270	3.878
pp 5.02 TeV MB	4.30	0.181	0.198	6.248
p-Pb 5.02 TeV NSD	17.81	0.177	0.423	1.846
Pb–Pb 5.02 TeV 0-10%	1781	0.113	0.659	0.650

Use coalescence model to calculate extra Ξ_c from (us)+c for pp collision

2-Dim Coalescence model

$$\begin{aligned} \frac{\mathrm{d}^2 N_{\Xi_c^0}}{\mathrm{d}^2 P_{\mathrm{T}}} &= \frac{g_{\Xi_c^0}}{g_{[us]}g_c} \left(2\sqrt{\pi}\sigma\right)^2 \frac{1}{A} \int d^2 p_{1\mathrm{T}} d^2 p_{2\mathrm{T}} \ \frac{\mathrm{d}^2 N_{[us]}}{\mathrm{d}^2 p_{[us]\mathrm{T}}} \frac{\mathrm{d}^2 N_c}{\mathrm{d}^2 p_{c\mathrm{T}}} \times \exp\left[-\sigma^2 p'^2\right] \delta^{(2)} (\vec{P}_{\mathrm{T}} - \vec{p}_{[us]\mathrm{T}} - \vec{p}_{c\mathrm{T}}), \\ \sigma &= \sqrt{8/3} r_{\Xi_c^0} \text{ and we used } r_{\Xi_c^0} = 0.222 \text{ fm} \qquad \text{quark model calculation.} \end{aligned}$$

A from fit to deuteron and He3

Result

rightarrow Ξ_c from (us)+c coalescence

Summary

• Quark model shows that (us) or (ds) diquarks are more stable than an (ud) diquark

• Such a strong correlation in (us) or (ds) will enhance the production of baryons composed dominated by such configurations.

• The anomalous enhancement of $\frac{\Xi_c}{D^0}$ in pp can be explained by the presence of (us) diquarks in the hadronization process.

Similar enhancement is expected in heavy ion collision