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Notion of freeze-out hypersurface

Usually, the sharp freeze-out hypersurface is defined by the parameter P(t , r)
taking the critical value Pc on the hypersurface:

P(t , r) = Pc

The parameter for defining the hypersurface can be selected as:

The density of particles: n(t , r) = nc

D.Adamova (CERES Collaboration), Phys. Rev. Lett. 90, 022301 (2003).

The energy density: ε(t , r) = εc

J. Sollfrank, P. Huovinen, and P.V. Ruuskanen, Eur. Phys. J. C 6, 525 (1999).

V.N. Russkikh and Y.B. Ivanov, Phys. Rev. C 76, 054907 (2007).

The temperature: T (t , r) = Tc

H. von Gersdorff, L. McLerran, M. Kataja, and P.V. Ruuskanen, Phys. Rev. D34, 794 (1986).

P. Huovinen, Eur. Phys. J. A 37, 121 (2008).
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The freeze-out hypersurfaces in quasi-four-dimensional form: (x , y)→ rT =
√

x2 + y2

     

     

    

[1] D. Anchishkin, V. Vovchenko, and L.P. Csernai, Phys. Rev. C 87, 014906 (2013).
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Radiation of quantum fields from space-like hypersurface: the Cauchy problem

Figure: Sketch of a freeze-out hypersurface for a spherically symmetric fireball expansion. Left panel: Constant initial time t = t0 and
constant spatial boundary R = R0. Right panel: Dependence of the initial radiation time on the radius and the dependence of the spatial
boundary on time (solid curve).
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Initial value problem

(∂µ∂
µ + m2) ϕ̂(x) = 0 ,

where ∂µ∂µ = ∂2
t −

~∇2, ~ = 1, c = 1.

The Cauchy problem or the initial conditions for this equation are specified on a space-like hyper-surface

ϕ̂(x0, x)
∣∣∣
x0=t0

= Φ̂0(x) ,
∂ϕ̂(x0, x)

∂x0

∣∣∣∣
x0=t0

= Φ̂1(x)

Equation for the evolution of ϕ̂(x) together with the initial conditions can be written as:

(∂µ∂
µ + m2) ϕ̂(x) = δ(x0 − t0)Φ̂1(x) + δ′(x0 − t0)Φ̂0(x)

The Green’s function:

GR(x − y) = −
∫

d4k
(2π)4

e−ik·(x−y)

(k0 + iδ)2 − k2 −m2
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Solution of the Klein-Gordon equation

Solution:

ϕ̂(x) =

∫
d4y δ(y0 − t0)

[
GR(x − y)

↔
∂

∂y0 Φ̂(y0,y)

]

where we update notations of the initial conditions:

Φ̂0(y) = Φ̂(y0,y)
∣∣
y0=t0

, Φ̂1(y) = ∂Φ̂(y0,y)/∂y0
∣∣
y0=t0

For the arbitrary space-like hyper-surface, σ(y), solution looks like

ϕ̂(x) =

∫
σ

dσµ(y)

[
GR(x − y)

↔
∂

∂yµ
Φ̂(y)

]
.
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Measurement of the momentum spectrum

k̂ψk(r) = kψk(r) → φ(r) =
∑

k

〈ψk
∣∣φ〉ψk(r)

P(k) =
∣∣∣〈ψk

∣∣φ〉∣∣∣2
We assume that the detector measures asymptotic momentum eigenstates,

i.e. that it acts by projecting the emitted single-particle state onto

φout
k (t , r) = e−i ωk t+i k·r , with ωk =

√
m2 + k2

ϕ̂(t , r) =

∫
d3k

(2π)3 2ωk

[
b(k) e−iωk t+ik·r + b+(k) eiωk t−ik·r]

The single-particle spectrum and two-particle spectrum

P1(p) =
〈

b+(p) b(p)
〉
, P2(p1,p2) =

〈
b+(p1) b+(p2) b(p2) b(p1)

〉
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Connection of the operators b and b+ with the field of the fireball Φ̂(x)

Calculation of operators b(k) and b+(k):

b(k) =

∫
d3r ei(ωk t−k·r) i

↔
∂ t ϕ̂(t , r) = −

∫
d4y δ(y0−t0)

[
e−i(ωk y0−k·y)i

↔
∂
∂y0 Φ̂+(y)

]

For the arbitrary space-like hyper-surface σ(x)

b(k) = i
∫
σ

dσµ(x)

[
f ∗k (x)

↔
∂

∂xµ
Φ̂(x)

]

b+(k) = −i
∫
σ

dσµ(x)

[
fk(x)

↔
∂

∂xµ
Φ̂+(x)

]
,

where fk(x) = e−i(ωk x0−k·x).
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Single-particle spectrum [2]

2Ep
dN
d3p

=
〈

b+(p) b(p)
〉

2Ep
dN
d3p

= i
∫

d4x1 d4x2 δ(x0
1−t0) δ(x0

2−t0)

[
fp(x1) f ∗p (x2)

↔
∂

∂x0
1

↔
∂

∂x0
2

G<(x2, x1)

]

Covariant form of the single-particle spectrum

2Ep
dN
d3p

= i
∫

dσµ(x1) dσν(x2)

[
fp(x1) f ∗p (x2)

↔
∂

∂xµ1

↔
∂

∂xν2
G<(x2, x1)

]

where we have defined the correlation function or the lesser Green’s function:

i G<(x2, x1) = ±
〈

Φ̂+(x1) Φ̂(x2)
〉

Here the plus sign reads for bosons and the minus sign for fermions.

[2] D. Anchishkin, J.Phys.G 49, 055109 (2022)
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Single-particle spectrum: local thermodynamic equilibrium

G<(x2, x1) =

∫
d4k

(2π)4 e−ik·x G<(X ; k) ,

where x = x1 − x2 and X = (x1 + x2)/2.

2Ep
dN
d3p

= i
∫

d4k
(2π)4 d4Xd4x δ(X 0 − t0) δ(x0) e−i(p−k)·x

(
p0 + k0

)2
G<(X ; k) ,

where p0 = Ep =
√

m2 + p2.

Covariant form of the single-particle spectrum - 1

2Ep
dN
d3p

= i
∫

d4k
(2π)4

∫
σ

dσµ(x1)dσν(x2)e−i(p−k)·(x1−x2)

× (p + k)µ(p + k)νG<(X ; k)

Here we use: d4x1δ(x
0
1 − t0)p

0 = dσµ(x1)pµ .
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Approximations

1 We assumed that the particles are free on the freeze-out hypersurface,
this leads to the approximation:

G<(X ; k) ≈ G<
0 (X ; k)

In a system with slowly varying inhomogeneity, the free Green’s function
can be represented as:

i G<
0 (X ; k0, k) =

π

ωk
δ(k0 − ωk ) fBE (X ; k0)

2 We assume that the correlation function G<(x1, x2) differs significantly
from zero only if |x1 − x2| → 0:∫

V
d4x δ(x0) e−i(p−k)·x = (2π)3δ3(p− k)

2Ep
dN
d3p

=

∫
d4X δ(X 0 − t0) 2Ep fBE (X ; Ep)

In a homogeneous system (no dependence on X ) the formula reduces to:

dN
d3p

= V fBE (Ep)
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(1) + (2) → Reduction to the Cooper-Frye formula

2Ep
dN
d3p

= i
∫

d4k
(2π)4 d4Xd4x δ(X 0 − t0) δ(x0) e−i(p−k)·x

(
p0 + k0

)2
G<(X ; k)

With account for the equal-time initial conditions dt = dX 0 = 0 we get:

d4X δ
(
X 0 − t0

)
p0 = dσµ(X ) pµ

Reduction to the Cooper-Frye formula

Ep
dN
d3p

=

∫
dσµ(X ) pµ fBE (X ; p · u) ,

where p0 = Ep =
√

m2 + p2, and u(X ) is the four-velocity at the point
X = (X 0,X) given on a space-like hypersurface.
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Taking into account a finite size of the fireball

∫
V

d4x δ(x0) e−i(p−k)·x 6= (2π)3δ3(p− k)

A multiparticle system has weak inhomogeneity and is in local thermodynamic
equilibrium

2Ep
dN
d3p

=

∫
d3k

(2π)32ωk

∫
σ

dσµ(x1)dσν(x2)e−i(p−k)·(x1−x2)(p + k)µ(p + k)ν f (X ; k)

where p0 = Ep =
√

m2 + p2, k0 = ωk =
√

m2 + k 2.

The case of global thermodynamic equilibrium

2Ep
dN
d3p

=

∫
d3k

(2π)32ωk
f (k)

∣∣∣∣ ∫
σ

dσµ(x) (p + k)µ e−i(p−k)·x
∣∣∣∣2 .

where p0 = Ep, k0 = ωk .



Radiation: the Cauchy problem Concluding remarks

Radiation of particles from a system with a finite lifetime τ = 1/γ

Dependence of the isotropic pion spectrum on the |p| = p,
d3p = sin θdθdϕp2dp:

dN
4πp2dp

= V
∫ ∞

0

dk0

π

(Ep + k0)2

2Ep

m γ

(k2
0 − E2

p )2 + (m γ)2
fBE (k0)

Our goal is to compare this spectrum with the Cooper-Frye formula for the
isotropic radiation:

dN
4πp2dp

= V fBE (Ep)
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Radiation of particles from a system with a finite lifetime τ = 1/γ

A comparison of the pion transverse spectra at midrapidity,

(px , py , pz)→ (ϕ, pT , y), d3p = sin θdθdϕp2dp, mT =
√

m2
π + p2

T and y = 0:

dN
2πpT dpT dy

= V
∫ ∞

0

dk0

π
(mT + k0)2 m γ

(k2
0 −m2

T )2 + (m γ)2
fBE (k0)

Our goal is to compare this spectrum with the Cooper-Frye formula for the
isotropic radiation:

dN
2πpT dpT

= V mT (pT ) fBE

(
mT (pT )

)
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It is interesting to compare our results with pion spectrum versus transverse momentum at midrapidity in the transverse momentum range
0.6 GeV/c< pT < 12 GeV/c measured in Pb-Pb collisions at

√
sNN = 2.76 TeV

B. Abelev, J. Adam, D. Adamová et al. (The ALICE Collaboration), Eur. Phys. J. C 74, 3108 (2014).
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Conclusions

We obtained the quantum generalization of the Cooper-Frye for the
single-particle spectrum in the framework of the following assumptions:

The multi-particle system has a weak inhomogeneity;

The multi-particle system is in local thermodynamic equilibrium;

Particles are in free states on the freeze-out hypersurface;

The correlation function G<(x1, x2) differs significantly from zero only if
the differences of the arguments x1 − x2 are close to zero.

The latter assumption (4) cannot be applied if the system is close to a
second-order phase transition, when the correlation length becomes
sufficiently large. At the same time, this approximation excludes quantum
effects.
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Thank you for attention !
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Interference of the radiation from the freeze-out hypersurface

We can argue that formulae derived is a generalization of the Cooper-Frye
formula, which takes into account quantum effects. Indeed, one can rewrite

2Ep
dN
d3p

=

∫
σ

dσµ(x1) dσν(x2) Jµν(x1 − x2,p) ,

were we define the tensor Jµν

Jµν(x1 − x2,p) = e−ip·(x1−x2)

∫
d3k

(2π)32ωk
eik·(x1−x2)(p + k)µ(p + k)ν f (X ; k)

The last integral includes interference of waves with different momenta k ,
which are projected onto the out-state with momentum p. There is no such
interference in the Cooper-Frye formula, where k = p is taken.
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