Femtoscopcy for the NAPLIFE nano-fusion project?

52nd International Symposium on Multiparticle Dynamics, Aug. 24, 2023, Gyöngyös, Hungary

Laszlo P. Csernai, for the NAPLIFE Collaboration
Univ. of Bergen, Norway
Two ideas are combined by L.P. Csernai, N. Kroo, I. Papp: [Patent # P1700278/3] (2017)

Problems:
• Rayleigh-Taylor instability
• Slow propagation of burning from central hot-spot

Solution:
• Heat the system uniformly by radiation with RFD (1)
• Achieve uniform heating by Nano-Technology (2)

[L.P. Csernai, N. Kroo, I. Papp, Laser and Particle Beams, LPB, 36(2), (2018) 171-178.]
https://doi.org/10.1017/S0263034618000149

But let us go back in history ➔
Rayleigh-Taylor Instability
The target is compressed to density $\sim 700 \text{ g/cm}^3$.

But, although an ablator layer is used, only $\sim 10\%$-of the target is ignited. Elsewhere the surface protruded as “potato from the potato press”: RT-instability.
How can we prevent it
Idea - #1
A.H. Taub assumed that (physically) only slow space-like shocks or discontinuities may occur (with space-like normal, $\lambda_4=0$).

This was then taken as standard, since then (e.g. LL 1954-)

Next we suppose that the three-dimensional volume is a shell of thickness ϵ enclosing a surface of discontinuity Σ whose three-dimensional normal vector is Λ_i. If we choose our coordinate system so that the discontinuity is at rest, then since

$$\lambda_a \lambda^a = 1, \quad \sum_{i=1}^{3} \Lambda_i^2 = 1,$$

we have

$$\lambda_i = \Lambda_i \quad \text{and} \quad \lambda_4 = 0.$$
corrected the work of

\[\lambda_a \lambda^a = \pm 1 \]
@ CERN in High energy heavy ion collisions

[Stefan Floerchinger and Urs Achim Wiedemann, Phys. Rev. C 89, 034914 (2014)]
Femtoscopy in heavy ion collisions: Wherefore, Whence, & Whither?

Mike Lisa
Ohio State University

- Wherefore (=“why?”)
 - motivation & (basic) formalism
- Whence (=“from where?”)
 - systematics over 2 decades
- Whither (=“to where?”)
 - or “wither”...?

http://www-rne.lbl.gov/TBS

MAL, Pratt, Soltz, Wiedemann
Fusion reaction:
\[D + T \rightarrow n(14.1 \text{ MeV}) + 4\text{He} (3.5 \text{ MeV}) \]

Constant absorptivity,
Spherical irradiation
Ignition temperature = T1

Simultaneous, volume ignition up to 0.5 \(R \) (i.e. 12% of the volume).

Not too good, but better than:

How can we realize it
Idea - #2
Golden Nano-Shells – Resonant Light Absorption

Csernai, L.P. [NAPLIFE]
The absorption coefficient is **linearly** changing with the radius: In the center, \(r = 0, \ \alpha_K = 30 \text{ cm}^{-1} \) while at the outside edge \(\alpha_K = 8 \text{ cm}^{-1} \).

The temperature is measured in units of \(T_1 = 272 \text{ keV}, \) and \(T_n = n T_1. \)

Simultaneous, volume ignition is up to 0.9 \(R \), so **73% of the fuel target!**
TEM Photo of ~uniformly implanted 85x25 nm nanorod antennas in UDMA target polymer. The density is 9-20 / μm³

[Judit Kámán, A. Bonyár et al. (NAPLIFE Collab.)], Gold nanorods …, 10th ICNFP 2021, Kolymbari, Crete, Greece, 30 August 2021.]
Layered target with variable light absorption

Representative uniform & Gaussian number density distributions of (d) 70 oriented nanorods, in a $1 \times 1 \times 21$ µm3 supercell of UDMA polymer target, with random location distribution.

Validation tests ➔

Laser Induced Fusion with Nanoantennas
Deuterium production (PRELIMINARY !)

Two step process (average of 20 shots):

\[p + e^* \rightarrow n + \nu \ \text{electron capture } (-1.24 \text{ MeV}) \]
\[n + p \rightarrow d + \gamma \ \text{neutron capture } (+2.22 \text{ MeV}) \]

Electron capture may happen spontaneously in heavy nuclei, here laser light and resonant nanorods act similarly, high \(\Theta \) density UDMA (470: H38, C23, O8, N2)

5-12% \(\text{D} \) + 88-95% \(\text{H} \)

\(~ 10^{17} \text{ D} / \text{pulse} \) (10Hz)

100% \(\text{H} \)

Balmer-\(\alpha \) line

[P. Rácz, A. Kumar et al. 2021 ICNFP, Kolymbari]
With Nanorods (Au2) at 25 mJ laser pulse ~4 times increased D production, compared to 1 mJ pulse

Csernai, L.P. [NAPLIFE]
J. Kámán, Á. Nagyné Szokol et al., 11th Int. Conf. on New Frontiers in Physics 2022, Kolymbari, Crete
Theoretical analysis of Crater & Deuterium production

With nanorods V grows non-linearly. Increasing energy deposition. Several types of targets are considered: Au1 and Au2 with implanted nano-rod antennas, and Au0 without implantation. The mass concentrations of implanted particles in UDMA are 0.126% and 0.182% for targets Au1 and Au2, respectively.

With nanorods, Au2, deposited energy into the crater increases non-linearly (?!)

Origin of this extra energy (?!)

[LP. Csernai et al., Phys. Rev. E, 108(2) 025205 (2023)]
Laser pulse energy: 25 mJ

Dependence of crater volume on laser energy for copper. (532 nm, 6 ns)
Calculational Box (CB)
(530 nm)3

Nano-rod antenna
(~ 85x25 nm)

Ey Ffield

laser

Csernai, L.P. [NAPLIFE]
$I = 4 \cdot 10^{17} \text{ W/cm}^2 \quad V \sim 7.1 \cdot 10^{12} \text{ V/m}$

$I = 4 \cdot 10^{15} \text{ W/cm}^2 \quad V \sim 2.6 \cdot 10^{12} \text{ V/m}$

[I. Papp et al., arXiv: 2306.13445]
I = 4 \cdot 10^{17} \text{ W/cm}^2
\quad \text{dV} \sim 8 \cdot 10^{12} \text{ V/m}

\text{Dipole } L = 85 \text{ nm}

\text{dV} \sim 1 \cdot 10^6 \text{ V/m}
\quad \text{Dipole } L \sim 16 \text{ cm}

Neighboring protons are accelerated (100-200 nm)
Laser wake field acceleration mechanism =>

BUT
Proton amplitudes & speeds are smaller
Number of 1-2 MeV protons is about 1-100
=> small number of Deuterium
One-sided irradiation

\[C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}, \]

\[C(k, q) = 1 + \frac{R(k, q)}{\left| \int d^4x S(x, k) \right|^2}, \]

\[R(k, q) = \int d^4x_1 d^4x_2 \cos[q(x_1 - x_2)] \times \]
\[S(x_1, k + q/2) S(x_2, k - q/2). \]

Two-sided irradiation

\[J(k, q) = \int d^4x S(x, k + q/2) \exp(iq x) \]
\[R(k, q) = Re \left[J(k, q) J^*(k, -q) \right]. \]

\[f^J(x, p) = \frac{n(x)}{C_\pi (2\pi \hbar)^3} \exp \left(\frac{-p^\mu u_\mu(x)}{T(x)} \right) \]

\[f_{CJ} = \frac{\Theta(p^\mu d_\sigma_\mu) n(x)}{C_\pi (2\pi \hbar)^3} \times \]
\[\left(\exp \frac{-p^\mu u^R_\mu}{T} - \exp \frac{-p^\mu u^L_\mu}{T} \right) \]
Fluid elements [s] can be represented by Cancelling Jüttner distributions, i.e. Cells are not in thermal equilibrium. (protons are accelerated by the nanorods

Then standard procedure like for a spherical, thermal cell.

\[
C(k, q) = 1 + \exp \left(-\frac{(\Delta\tau)^2(\hat{\sigma}^\mu q_\mu)^2 - R^2 q^2}{2R^2} \right)
\]

\[
C(k, q) = 1 + \exp \left(-R^2 q^2 \right)
\]

For a single spherical source:

[L.P. Csernai, S. Velle, and D.J. Wang
PHYSICAL REVIEW C 89, 034916 (2014)]
New fusion mechanism

Traditionally (NIF) after ignition, DT burning is spreading by *alpha particle self heating*. This turns out to be slower than expansion after extreme compression and extreme pressure.

HINT:
Here after simultaneous (time-like) ignition attraction of large number of electrons *collectively accelerate* protons, which can induce nuclear reaction (e.g. transmutation).

We try to verify this mechanism by the Hanbury-Brown and Twiss effect to determine the deuteron and alpha source size, after a laser shot.
High Energy, Short Pulse Laser, unique at ELI – ALPS Szeged
European Laser Infrastructure – Szeged, HU

ELI-ALPS Szeged:
EU Extr. Light Infrastructure
Attosec. Light Pulse Source

2PW High Field laser
10 Hz, <10fs, 20 J