

Forward-backward correlations with the Σ quantity in the wounded-constituent framework at energies available at the CERN Large Hadron Collider

IWONA SPUTOWSKA

Institute of Nuclear Physics Polish Academy of Sciences

Introduction: Why and how do we study correlations and fluctuations?

Analysis of correlations and fluctuations can provide information about **the early stages of heavy-ion collisions.**

Introduction: Why and how do we study correlations and fluctuations?

Introduction: FB correlations with strongly intensive quantity Σ

• **Strongly intensive quantities** do not depend on system volume nor system volume fluctuations.

• For a symmetric collision $\boldsymbol{\omega}_{B} = \boldsymbol{\omega}_{F}$ and $\langle \mathbf{n}_{F} \rangle = \langle \mathbf{n}_{B} \rangle$,

 $Σ \approx ω(1-b_{corr}).$

For Poisson distribution: $\omega=1 \& b_{corr}=0 \rightarrow \Sigma=1$

Independent source model:

 $\Sigma \rightarrow$ gives direct information about characteristics of single source distribution!

ALICE: Σ as a function of centrality bin width

ALICE: Σ as a function of centrality

- Values of Σ increase with energy and increase with decreasing centrality in experimental data, contrary behavior noted for MC HIJING results.
- MC AMPT and MC EPOS reproduce dependence on centrality **qualitatively** but **not quantitatively**.
- From results for MC AMPT it is evident that Σ is sensitive to the mechanism of particle production

FB correlations with the Σ quantity in **the wounded-constituent framework:**

$\boldsymbol{\Sigma}$ in WNM and WQM for a symmetric AA collision:

 $\Sigma = 1 + \frac{\overline{n}}{2}C^{2}\left[\frac{\langle (w_{B} - w_{F})^{2} \rangle}{2\langle w_{F} \rangle} + \frac{2}{k}\right]$

p ≠0.5 ⇔ C≠0: Σ>1 and shows intrinsic dependence on the number of w_F and w_B → no longer a strongly intensive quantity!

[1] A. Białas, M. Bleszyński and W. Czyż, Nucl. Phys. B 111, 461 (1976) [2] A. Białas, W. Czyż and W. Furmański, Acta Phys. Polon. B 8, 585 (1977) [3] Adam Bzdak, Phys. Rev. C 80, 024906

WN(Q)M: Σ quantity as a function of centrality bin width and centrality selection method

This <u>can be explained theoretically</u> if one notes that Σ in WN(Q)M can be rewritten in terms of *partial covariance*.

$$\Sigma = 1 + \frac{\overline{n}}{2} C^2 \left[\frac{-2 \operatorname{Cov}(w_F, w_B \bullet w)}{\langle w_F \rangle} + \frac{2}{k} \right]$$
$$w = w_F + w_B$$

Σ in WNM and WQM:

$$\Sigma = 1 + \frac{\overline{n}}{2}C^2 \left[\frac{\langle (w_B - w_F)^2 \rangle}{2 \langle w_F \rangle} + \frac{2}{k} \right]$$

 p≠0 → C≠0: intrinsic dependence on the number of *w_F* and *w_B* → no longer a strongly intensive quantity!

, but ...

- resemblance to the behavior reported by ALICE (slide 5)
- Σ does not depend on centrality bin width (volume fluctuations).
- **Σ does not** depend on centrality estimator!

"strongly-intensive-quantity-like" properties!

WN(Q)M: Σ quantity as a function of centrality

- WNM and WQM \rightarrow accurately depict the trend of Σ with centrality observed in the experimental data^[4](also for Pb-Pb at $\sqrt{s_{NN}}=2.76$ and Xe-Xe at $\sqrt{s_{NN}}=5.44$ TeV^[5]).
- Values of Σ in the WNM and WQM are sensitive to the probability value *p*.

- From comparison the data with WN(Q)M: **probability** *p* **changes as a function of pseudorapidity.**
- These probability values provide a new way to estimate the wounded nucleon (quark) fragmentation function in symmetric AA collisions!

In this study I investigated the properties of Σ quantity at LHC energies using the wounded nucleon and wounded quark models:

(1) Two-component scenario of forward- and backward-moving constituents \rightarrow **collapses the strongly intensive properties** of Σ !

(2) Even though in the WNM and WQM Σ is no longer a strongly intensive quantity, it **retains some of its properties** in symmetric AA collisions \rightarrow due to its relation to partial covariance.

(3) Σ results determined in WNM and WQM are in **good agreement** with the ALICE data. The models outperform more complex ones such as HIJING, AMPT, or EPOS, which struggle to describe Σ properly.

(4) Σ is sensitive to propability p of particle emission in η interval by a wounded source. This relation allows the **direct determination of the fragmentation function** of a wounded nucleon or quark in a symmetric nucleus-nucleus collision, which has not been possible so far!

This work was supported by the National Science Centre, Poland (grant No. 2021/43/D/ST2/02195). Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI Proc. 10, 14 (2019) **Σ** in AA and pp collisions I. Sputowska (ALICE), EPJ Web Conf. 274, 05003 (2022). **Strongly Intensive Quantities** M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th. Σ in WNM and WOM I. Sputowska, Phys.Rev.C 108 (2023) 1, 014903