An update on the hypothetical X17 particle

Attila J. Krasznahorkay
Institute for Nuclear Research (ATOMKI)
Debrecen
Hungary
Observation of Anomalous Internal Pair Creation in 8Be: A Possible Indication of a Light, Neutral Boson

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

T.J. Ketel

Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay

CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

(Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV ($J^p = 1^+, T = 1$) state \rightarrow ground state ($J^p = 0^+, T = 0$) and the isoscalar magnetic dipole 18.15 MeV ($J^p = 1^+, T = 0$) state \rightarrow ground state transitions in 8Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of > 5σ. This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70 ± 0.35(stat) ± 0.5(syst) MeV/c2 and $J^p = 1^+$ was created.

The ATOMKI anomaly \rightarrow signals for a new 17 MeV boson \rightarrow gauge boson of a new fundamental force of nature
A New Particle is Being Born in ATOMKI that Could Make a Connection to Dark Matter

Attila Krasznahorkay, Attila Krasznahorkay, Margit Csatlós, Lóránt Csige & János Timár

Pages 10-15 | Published online: 21 Sep 2022

Download citation https://doi.org/10.1080/10619127.2022.2100157

feature article

A New Particle is Being Born in ATOMKI that Could Make a Connection to Dark Matter
Study of the 8Be M1 transitions

Excitation with the 7Li(p,γ)8Be reaction

8Be

8Be

Ep = 1030 keV
Ep = 441 keV
$\text{e}^+\text{-e}^-\text{ energy-sum spectra and angular correlations}$

^{8}Be

$E_p=1.04\text{ MeV}$

$E_p=1.10\text{ MeV}$

Angular correlations measured from the decay of the $E_x=18.2\text{ MeV}$ resonance
Kinematical evidence for the X17 particle

Vector character of X17 is supported

Ejected with $L=1$ in 8Be

Previous experimental results

Consistent result with a new spectrometer
The following facts give us confidence about the reliability of the experimental results:

• Good agreement between the experimental and simulated acceptances,
• Good agreement between experimental and simulated IPCC values for 16O, 28Si, 8Be 17.6 MeV and 15.1 MeV transitions for large angular ranges,
• Consistent experimental results with 6, 5, and 2 telescopes,
• Good agreement between experimental and simulated IPCC values for asymmetric energy distributions of the e^+e^- pairs,
Observation of the X17 anomaly in the decay of the Giant Dipole Resonance

Giant $E1$ resonances in ^8Be from the reaction $^7\text{Li}(p,\gamma)^8\text{Be}_1$

G. A. Fisher,*, P. Paul,‡ F. Rieß,§ and S. S. Hanna
Department of Physics, Stanford University, Stanford, California 94305
(Received 21 January 1976)

TRK sum rule

$$\int_{E_1}^{E_3} \sigma(E) dE = \frac{60}{A} \frac{N \langle Z \rangle}{A} \text{MeV} \text{mb}$$
A new e^+e^- spectrometer, their acceptance, γ-ray and energy-sum spectra
e^+e^- angular correlations for the low-energy region, and for the GDR one
Fitting the e^+e^- angular correlation for the GDR region
Thank you very much for your kind attention
To be continued...
Simulation for the X17 decay created in the $^7\text{Li}(p,\gamma)^8\text{Be}$ reaction at different proton bombarding energies (γ_1 transition)
γ-ray and e^+e^- energy-sum spectra recorded at $E_p = 4$ MeV