SEARCHING FOR THE X17 USING MAGNETIC SEPARATION

Tibor Kibédi

Department of Nuclear Physics and Accelerator Applications Research School of Physics, Australian National university

ISIMD 25-Aug-2023

<u>Outline</u>

- □ ANU Super-e e⁺e⁻ pair spectrometer
- \Box ⁷Li(p, $\gamma\pi$)⁸Be* with Super-X & 14 MV tandem (ANU, proposal)
- ⁷Li(p,γπ)⁸Be* with TPC & 5 MV tandem (Univ. Melbourne, proposal, Martin Sevior)

ANU Super-e pair spectrometer

3

3.353 MeV EO in ⁴⁰Ca

5.212 MeV SD to GS EO in ^{40}Ca

with E. Ideguchi (Osaka)

ISMD 25-Aug-2023

CRICOS PROVIDER #00120C

7.654 MeV EO from the Hoyle state

6

CRICOS PROVIDER #0012

ISMD 25-AUG-2023

Searching for X17 in ⁷Li($p,\gamma\pi$)⁸Be*

Double differential IPF cross sections M1: Tim Grey & Jackson Dowie, ANU X17: Lászlò Sarkadi, ATOMKI

<u>18.15 MeV 1+ state</u>

 \Box Resonant excitation at E_p=1.03 MeV

🖵 Γ=138(6) keV

- 18.15 MeV M1 EM transition
 - \Box Γ_{γ} =1.9(4) eV, Γ_{γ}/Γ =1.5×10⁻⁵
 - **Γ** Γ_{IPF}(M1)/Γ_γ=3.2×10⁻³
- <u>18.15 MeV M1 X17 decay</u>
 - \Box $\Gamma_{\text{IPF}}(X17)/\Gamma_{\gamma}=5.8\times10^{-6}$ Krasznahorkay PRL 2016
 - Most intensity for E⁺ ~ E⁻ pairs at θ_{sep}~140°
 - \Box 50% of the intensity:
 - E+ [6.7:10.7] MeV; ±23%
 - $\Theta_{sep} \text{ [134°: 140°]}$

7

Searching for X17 in ⁷Li($p,\gamma\pi$)⁸Be* - Super-X (ANU)

- \Box Twin lens system to accept e+e- 110° < Θ_{sep} < 180°
- □ Three double sided DSSD to reconstruct trajectories; $\Delta \Theta_{sep} \sim 6^{\circ}$
- NaI energy detectors; Si(Li) or hpGe bremsstrahlung?
- 14 UD & energy degrader foil to run at 1.03 MeV resonance energy

TIBOR KIBÉDI (ANU)

⁷Li($p,\gamma\pi$)⁸Be* - High resolution pair spectroscopy Super-e (ANU)

- Ep=1.03 MeV, energy degrader foil just before analysing magnet of the 14 UD
- Super-e pair spectrometer, looking for normal conversion of the 15.1 & 18.15 MeV M1
- \square Quantify the contribution of the 21.6 MeV E1 ($\Gamma \approx$ 4 MeV)

9

Time Projection Chamber to be installed on 5 MV Pelletron Univ. Melbourne, details available at Sevior et al. <u>arXiv:2302.13281</u>)

□ 34 cm diam solenoid, up to 0.4 Tesla
□ 35 cm long active volume He (90%) / CO₂ (10%) Electric Field Cage

Expected performance of the TPC

- Design based on extensive simulations (Geant4, COMSOL, GARFIELD, ROOT, GenFit
- □ Full simulation and reconstruction of IPC+X17 with 50 µm Mylar vacuum wall
- □ 4 Day run on Pelletron. 2µA proton beam, 2x10¹⁹ /cm² ⁷Li target
- □ Quantify sensitivity as a function of BR relative to $p + {^7Li} \rightarrow {^8Be} + \gamma$

MARTIN SEVIOR, CPPC SYDNEY SEMINAR, AUGUST, 2023

□ ATOMKI found X17 with BR ~ 6×10^{-6} ^{7}Li (p, γ) at 6 σ

ISMD 25-AUG-2023

spectroscopy, isomers fission dynamics

CAESAR: time-correlated spectroscopy, nuclear structure

