ISMD2023, Gyöngyös, Hungary, Aug 20-26,2023

<u>QED meson description of the anomalous particles at ~17 and ~38 MeV</u>

Cheuk-Yin Wong

Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee USA

- I Introduction
- The report of anomalous soft photons, at ISMD 2009, Gomel, Belarus
- The Schwinger confinement mechanism implies a light q and q
 interacting in QED are confined in (1+1)D, as a <u>QED meson in (1+1)D</u>
- The <u>QED meson in (1+1)D</u> can represent <u>a physical QED meson in (3+1)D</u> when the radius of the flux tube in (3+1)D is properly taken into account
- I Such a theory predicts for light quarks with two flavors isoscalar and isovector mesons at ~17MeV and ~38 MeV
- III Anomalous particles at \sim 17 & \sim 38 MeV were subsequently observed by ATOMKI and DUBNA
- **IV** Conclusions: promising experimental evidence, pending confirmations, important implications

CYWong,PRC81,064903(2010);arxiv:1001.1691 CYWong,JHEP2020(8),165;arxiv:2001.04864 CYWong,EPJA58,100(2020);arxiv:2010.13948 CYWong,FrontPhys18,64401(2023),arxiv:2208.09920 CYWong & A.Koshelkin,arxiv:2111.14933 Anomalous soft photons (excess e+e-) are always produced whenever hadrons are produced. They are not produced when hadrons are not produced.

Experiment	Collision Energy	Photon pT	Photon/Brems Ratio				
Exclusive measurements with knowledge of all particle momenta to determine bremmstrahlung contributions							
K ⁺ p, CERN WA27,BEBC(1984)	70 GeV/c	Рт < 60 MeV/c	4.0 ± 0.8				
K ⁺ p, CERN NA22, EHS (1993) π ⁺ p, CERN NA22, EHS (1997)	250 GeV/c 250 GeV/c	Рт < 40 MeV/c Рт < 40 MeV/c	6.4 ± 1.6 6.9 ± 1.3				
π ⁻ p , CERN WA83,OMEGA(1997)	280 GeV/c	Рт < 10 MeV/c	7.9 ± 1.4				
π ⁻ p , CERN WA91,OMEGA(2002)	280 GeV/c	Рт < 20 MeV/c	5.3 ± 0.9				
p p , CERN WA102,OMEGA(2002)	450 GeV/c	Рт < 20 MeV/c	4.1 ± 0.8				
e+e-→hadrons CERN DELPHI(2010) with hadron production	~91 GeV (CM)	Рт < 60 MeV/c	~4.0				
e+e- → μ + μ - CERN DELPHI(2008) with no hadron production	~91 GeV (CM)	Рт < 60 MeV/c	~1.0				

(Table compiled by V. Perepelitsa, ISMD 2009, Gomel, Belarus)

e+e- annihilation at Z0 decay (~ 91 GeV)

DELPHI (EPJ 2010) arXiv:1004.1587

Schwinger confinement mechanism in QED in (1 + 1)D (static viewpoint)

In (3+1)D, the electric field lines of force extend to infinity, and a q and \overline{q} is de-confined. The potential is $V_{q\overline{q}}(r_{q\overline{q}}) = -\frac{g_{4D}^2}{4\pi |\overrightarrow{r_q} - \overrightarrow{r_{\overline{q}}}|} = -\frac{\alpha_{4D}}{|\overrightarrow{r_q} - \overrightarrow{r_{\overline{q}}}|}, \quad \alpha_{4D} = \frac{g_{4D}^2}{4\pi} = \frac{1}{137},$ g_{4D} is the QED coupling constant in (3+1)D and g_{4D} is dimensionless.

If the electric field lines of force in (3+1)D can be bundled together into a flux tube, which can be idealized as a string in (1+1)D, then

 $V_{q\bar{q}}(x_{q\bar{q}}) = \frac{g_{2D}^2}{2} |x_q - x_{\bar{q}}|$, and a q and \bar{q} will be confined.

Schwinger showed in 1962 that a massless fermion and an antifermion, interacting in QED in (1+1)D, are confined as a neutral boson with a mass

$$m = \frac{g_{2D}}{\sqrt{\pi}}$$

where g_{2D} is the QED coupling constant in (1+1)D and g_{2D} has the dimension of a mass.

Light quarks are approximately massless and they interact in QED.

We can apply the Schwinger confinement mechanism to light quarks to infer that a light q and \overline{q} interacting in QED in (1+1)D are confined as a QED meson in (1+1)D.


```
q and \bar{q} in a fluxtube in (3+1)D
```

 $(q \longrightarrow (\bar{q})$

Schwinger confinement mechanism in QED in (1+1)D, (dynamical viewpoint)

See Chapter6,CYWong'Intro.toHigh-EnergyHeavy-IonCollisions'

Consider the vacuum of completely filled states of massless quarks below the Dirac sea in (1+1)D Introduce an external QED gauge field A^{ν} acting on the quark field ψ

Dirac eq. $\gamma_{\nu}(p^{\nu}-g_{2D}A^{\nu})\psi = 0$

Solution of ψ generates an induced current, $j^{\nu} = \overline{\psi} \gamma^{\nu} \psi$,

(1) $j^{\nu} = -\frac{g_{2D}}{\pi} (A^{\nu} - \partial^{\nu} \frac{1}{\partial^{\lambda} \partial_{\lambda}} \partial_{\mu} A^{\mu})$, gauge-invariant under $(A^{\nu})' = A^{\nu} - \partial^{\nu} \Lambda$

The induced current j^{ν} generates a new gauge field \tilde{A}^{ν}

(2) Maxwell eq. $\partial_{\mu}F^{\mu\nu} = \partial_{\mu}(\partial^{\mu}\tilde{A}^{\nu} - \partial^{\nu}\tilde{A}^{\mu}) = g_{2D} j^{\nu}$

• Stable collective motion of is possible when $\tilde{A}^{\nu} = A^{\nu}$,

$$A^{\nu} \xrightarrow{\text{Dirac eq.}} j^{\nu} \xrightarrow{\text{Maxwell eq.}} \tilde{A}^{\nu} \rightarrow j^{\nu} \rightarrow A^{\nu} \rightarrow j^{\nu} \rightarrow \cdots$$

(A j A self-consistent non-linearity)

• When $\tilde{A}^{\nu} = A^{\nu}$, Eqs. (1) and (2) are the same as

(3)
$$\partial_{\mu}\partial^{\mu}A^{\nu} + \frac{(g_{2D})^2}{\pi}A^{\nu} = 0$$

(4)
$$\partial_{\mu}\partial^{\mu}j^{\nu} + \frac{(g_{2D})^2}{\pi}j^{\nu} = 0$$

■Eqs. (3) and (4) are the Klein-Gordon equation for a stable boson, QED meson in (1+1)D, with a mass

$$m = \frac{g_{2D}}{\sqrt{\pi}}$$

5

This second term needed to maintain gauge invariance

• Fundamental quantum field theory viewpoint:

A meson is a localized, stable, collective, space-time variation of the quark current j^{ν} and the gauge field A^{ν} in a many-body quark-(gauge field) fluid.

• Phenomenological, approximate two-body viewpoint:

A meson is a bound state of a valence quark and a valence antiquark interacting with a phenomenological effective confining interaction, as an approximate open-string two-body problem.

Can a $q\bar{q}$ meson in (1+1)D represent a physical $q\bar{q}$ meson in (3+1)D?

- In (3+1)D, the flux tube has a structure with a transverse radius R_T , the coupling constant g_{4D} is dimensionless.
- In (1+1)D, the open string has no structure, but the coupling constant g_{2D} has the dimension of a mass.
- In going from (3+1)D \rightarrow (1+1)D, the information on the flux tube radius R_T in (3+1)D is encoded in the coupling constant g_{2D} in (1+1)D, $(g_{2D})^2 = \frac{1}{\pi R_T^2} (g_{4D})^2$ C.Y.Wong, PRC80,054917(2009)[arxiv:0903.38790] C.Y.Wong, PRC81,064903(2010)[arxiv:1001.1691]
- A flux tube in (3+1)D can be idealized as a string in (1+1)D.
- <u>The string in (1+1)D</u> can be restored back to <u>the original physical flux tube in (3+1)D</u> by the above relation.
- We obtain for a physical QED meson in QED in (3+1)D, $m_{QED}^2 = \frac{4\alpha_{4D}^{QED}}{\pi R_{T,QED}^2}$. For a physical QCD meson in QCD in (3+1)D, $m_{QCD}^2 = \frac{4\alpha_{4D}^{QCD}}{\pi R_{T,QCD}^2}$ in the quasi-Abelian Approximation of QCD.
- If the flux tube radius R_T is an intrinsic property of the quark, then $\frac{(QCD \text{ meson mass } m_{QCD})}{(QED \text{ meson mass } m_{QED})} = \sqrt{\frac{\alpha_{4D}^{QCD}}{\alpha_{4D}^{QED}}} \approx \sqrt{\frac{0.7}{1/137}} \approx 10 \approx \frac{(hundreds \text{ MeV})}{(tens \text{ MeV})}, \text{ and } \frac{(QCD \text{ meson linear length})}{(QED \text{ meson linear length})} \approx \frac{1}{10}$

7 CYWong,ORNL There are serious objections to the proposed concepts of confined $q\bar{q}$ QED mesons in (3+1)D.

Debate between the Wise Guy (大智) and the Old Fool (愚公)

- Wise Guy Quarks interact in QCD and QED simultaneously.
- DaZhi(大智) raises objections:
- When quarks oscillates, the color charges and electric charges also oscillate simultaneously. Stable collective QED excitations of quarks cannot occur without the QCD interactions.

Old Fool YuGong(愚公) replies: • Quark current j^{ν} and gauge field A^{ν} are not single-element quantities. They are 3×3 color matrices. They have 9 elements which breaks up into color-octet subgroup and color-singlet subgroup

- In the space-time arena, each j^{ν} and A^{ν} subgroup can generate separate stable collective excitations.
- There can be localized, stable QCD excitations in the color-octet j^{ν} and A^{ν} to lead to π^{0} , η , η' ,...
- There can also be localized, stable QED excitations in the color-singlet j^{ν} and A^{ν} to lead to X17, E38,...

Debate between the Wise Guy (大智) and the Old Fool (愚公) (contd)

Wise Guy DaZhi(大智)■ Is it ever possible for a quark and antiquark be produced and interact in QED alone? raises objections :

Old Fool YuGong(愚公) replies:

• q and \overline{q} exist only when they are confined and bound

Confined and bound states arise non-perturbatively

■ A light q and \overline{q} pair can be produced for example by $e^+ + e^- \rightarrow q + \overline{q}$ at energies $\sqrt{s}(q\overline{q})$,

 $m_q + m_{\bar{q}} < \sqrt{s} \; (q\bar{q}) < m_\pi$

■ Below \sqrt{s} $(q\bar{q}) < m_{\pi}$, the q and \bar{q} can interact non-perturbatively only through the QED interaction, as the non-perturbative QCD interaction will lead to confined and bound QCD mesons with $m_{q\bar{q}} = \sqrt{s}$ $(q\bar{q}) \ge m_{\pi}$

<u>Debate between the Wise Guy (大智) and the Old Fool (愚公) (contd)</u>

Wise Guy	Only non-Abelian QCD interactions can confine quarks
DaZhi(大智)	The Abelian QED interaction does not confine electrons and positrons, so
raises	the QED interaction does not confine quarks and antiquarks
objections :	Lattice gauge calculations showed that a quark and an antiqurk is deconfined
	in compact QED in (3+1)D.

 Old Fool YuGong(愚公) replies:
 ■ Light quarks (and antiquarks) as massless fermions are confined in QED in 1+1D (Schwinger,1962)

 ■ Confined qq̄ in QED in 1+1D can be taken as idealization of confined qq̄ in QED in 3+1D in a flux tube replies:

 ■ Present-day lattice calculations for quarks in compact QED in (3+1)D may not be definitive because they do not include the Schwinger confinement effect of dynamical quarks

 ■ Polyakov showed that fermions are confined in compact QED in (2+1)D which can be longitudinally stretched into a flux tube -- for the Schwinger (1+1)D confinement mechanism to be operative

The open-string description of QCD+QED mesons gives correct π^0 , η , η' , X17, E38 masses (JHEP 08(2020)165,

arxiv:2001.04864)

For quantitative descriptions of QCD and QED mesons, we must take into account

(i) flavor mixture
$$D_{ij}$$
 of the physical states $\Phi_i = \sum_{f=1}^{N_f} D_{ij} |q_f \overline{q_f} >$
(ii) flavor independence of the color charges, $Q_u^{QCD} = Q_d^{QCD} = Q_s^{QCD} = 1$ for QCD
(iii) flavor dependence of the electric charges, $Q_u^{QED} = \frac{2}{3}$, $Q_d^{QED} = -\frac{1}{3}$ for QED
(iv) the quark condensate and the quark masses m_u , m_d , and m_s
 $m_I^2 = \frac{4\alpha_{4D}}{\pi R_T^2} \left[\sum_{f=1}^{N_f} D_{ij} Q_f \right]^2 + m_\pi^2 \frac{\alpha_{4D}}{\alpha_{4D}^{QCD}} \sum_{f=1}^{N_f} \frac{m_f}{(m_u + m_d)/2} (D_{ij})^2$

the mass of a confined meson, as inferred from the Schwinger confinement mechanism

Procedure to calculate the QED meson masses

- We input the pion mass m_{π} .
- We fit the η and η' masses, and obtain $\alpha_{4D}^{QCD} = 0.68$ and $R_T = 0.4$ fm.
- We assume that the flux tube radii are the same for QCD and QED mesons and extrapolate from QCD meson masses to QED mesons masses with $\alpha_{4D}^{QED} = \frac{1}{137}$.
- We obtained $m_{I=0}^{QED} = 16.9 \text{ MeV}$

$$m_{I=1}^{QED} = 36.4 \text{ MeV}$$

QCD mesons with 3 flavors and QCD mesons with 2 flavors in detail

CYWong, JHEP08 (2020) 165, [arxiv: 2001.04864]

$$m_I^2 = \frac{4\alpha_{4D}}{\pi R_T^2} \left[\sum_{f=1}^{N_f} D_{ij} \, Q_f \right]^2 + m_\pi^2 \frac{\alpha_{4D}}{\alpha_{4D}^{QCD}} \sum_{f=1}^{N_f} \frac{m_f}{(m_u + m_d)/2} \left(D_{ij} \right)^2 \,,$$

for the physical state $\Phi_i = \sum_{f=1}^{N_f} D_{ij} |q_f \overline{q_f} >$,

with D_{ij} and m_f from PDG Tables, $R_T = 0.4$ fm, $\alpha_{4D}^{QCD} = 0.68$, $\alpha_{4D}^{QED} = \frac{1}{137}$.

			Experimental	Mass formula	Semi-empirical
		State	mass	with massless	mass formula with
		(I, I_3)		quarks	mass corrections
			(MeV)	(MeV)	(MeV)
QCD-	π^0	(1, 0)	134.98	0	134.98^\dagger
mesons	η	(0,0)	547.30	329.7	498.4
	η'	(0,0)	948.2	723.4	948.2
QED-	isoscalar	(0, 0)		11.2	17.9
mesons	isovector	(1, 0)		33.6	36.4
	X17	?	16.70^\oplus		
	E38	?	$37.38^{\#}$		

QCD mesons & QED mesons are reasonable concepts!

 † Calibration

[#]A. Krasznahorkay et al., Phys.Rev.Lett.116,042501(2016)

 $^{\oplus}\mathrm{K.}$ Abraamyan et al., EPJWebConf.,104,08004(2019)

QED and QCD meson masses with 2 flavor in detail

$$\begin{split} \Phi_{I=0,I_3=0} &= \frac{1}{\sqrt{2}} (|u\bar{u}\rangle + |d\bar{d}\rangle) \\ \Phi_{I=1,I_3=0} &= \frac{1}{\sqrt{2}} (|u\bar{u}\rangle - |d\bar{d}\rangle) \end{split}$$

$$I = 0, I_3 = 0$$

Effective QCD: $\frac{1+1}{\sqrt{2}}$
charge QED: $\frac{1}{\sqrt{2}} \left[\left(\frac{2}{3} \right) + \left(-\frac{1}{3} \right) \right]$

$$I = 1, I_3 = 0$$

Effective QCD: $\frac{1-1}{\sqrt{2}}$
charge QED: $\frac{1}{\sqrt{2}} \left[\left(\frac{2}{3}\right) - \left(-\frac{1}{3}\right) \right]$

	$m_{I}^{2} = \frac{4\alpha_{4D}}{\pi R_{T}^{2}} \left[\frac{Q_{u} + (-1)^{I} Q_{d}}{\sqrt{2}} \right]^{2} + m_{\pi}^{2} \frac{\alpha_{4D}}{\alpha_{4D}^{QCD}}$					
Effective charge = $\frac{Q_u + (-1)^I Q_d}{\sqrt{2}}$						
$Q_u^{QCD} = Q_d^{QCD} = 1$						
$Q_u^{QED} = 2/3, Q_d^{QED} = -1/3$						
$R_T = 0.4 \text{ fm}, \ \alpha_{4D}^{QCD} = 0.68, \ \alpha_{4D}^{QED} = \frac{1}{137}$						
			Experimental	Mass formula	Semi-empirical	
		State mass with massless mass formula with				
		(I, I_3)		quarks	mass corrections	
			(MeV)	(MeV)	(MeV)	
QCD-	π^0	(1, 0)	134.98	0	134.98^{\dagger}	
mesons	η^0	(0, 0)	547.30	649.1	663.0	
QED-	isoscalar	(0, 0)		11.2	17.9	
mesons	isovector	(1, 0)		33.6	36.4	
	X17	?	16.70^\oplus			
	E38	?	$37.38^{\#}$			

 † Calibration

#A. Krasznahorkay et al., Phys.Rev.Lett.116,042501(2016)

 $^{\oplus}$ K. Abraamyan *et al.*, EPJWebConf., 104, 08004(2019)

CYWong,PRC81,064903(2010),[arxiv:1001.1691] CYWong,JHEP08(2020)165,[arxiv:2001.04864

Confrontation of theoretical QED meson predictions with experiment

We need

- (1) to produce QED mesons
- (2) to detect QED mesons by their decays
- (3) and measure the invariant mass of the decay products

QCD meson () and QED mesons () can be produced by producing $q\bar{q}$ pairs at the approviate energies in hadron-hadron colliisons

 \mathbf{B}'

B

600

1000

 \mathbf{A}'

(i) Low excitation energies below pion mass threshold (ATOMKI experiments) (ii) Peripheral high-energy parton-parton collisions

(b)Intermediate energy hadron-hadron and nucleus-nucleus collisions above pion mass threshold (Anomalous soft photons, Dubna experiments.)

1000 1000 10000000 0000000 В (c)High energies central AA Collisions (RHIC and LHC experiments)

000

 \mathbf{B}'

000

(d) **Coalescence during** deconfinement-to confinement QGP phase transition in high energies central AA collisions (RHIC & LHC experiments)

<u>QCD meson</u> and QED mesons can also be produced in in $e^+ - e^-$ annihibitions and bremsstrahlung-type processes

QED meson production by low-energy e^+e^- annihilation below pion mass threshold, $\sqrt{s_{e^+e^-}} \leq m_{\pi}$ (inverse ATOMKI experiment)

QED meson production by high-energy e^+e^- annihilation (DELPHI,PADME experiments,...)

QED meson production by electron-nucleus bremsstrahlungtype reactions (JLAB experiment,...) How QED meson decays ? What are their decay products?

<u>QED mesons can be detected by (a) $\gamma\gamma$, (b) $\gamma^*\gamma^*$, and (c) e^+e^- </u>

Experimental observations of anomalous particles at ~17 and ~38 MeV

Observation of X17 in the decay of ⁸Be* by ATOMKI (2016)

Krasznahorkay et al PRL116,042501 (2016)

FIG. 2. Angular correlations for the e^+e^- pairs measured the ${}^{3}H(p,\gamma)^{4}He$ reaction at the $E_p=900$ keV.

FIG. 3. Invariant mass distribution derived for the 20.49 MeV transition in 4 He.

Observation of the E38 boson at Dubna

Abraamyan et al. arxiv:1208.3829(2012) EPJWebConf204,08004(2019)

Other hints of anomalous particles in regions of many tens of MeV

- (i) Anomalous soft photons (excess e^+e^-) in high-energy hadron-hadron and
 - e^+e^- annihaltions, with $p_T < 60 \text{ MeV/c}^2$

(ii) COMPASS hadron-hadron collisions, with γγ invariant mass at ~17 and ~38 MeV
(iii) Pb collisions on Photographic Emulsion at RHIC, with e⁺e⁻ invariant mass at ~18 MeV
(iv) CMS anomalous low-mass diphoton structure at ~40 MeV in Pb-Pb collisions at LHC

(v) ALICE pPb collisions, $\gamma\gamma$ invariant mass at ~50 MeV.

Anomalous soft photons (excess e+e-) are always produced whenever hadrons are produced. They are not produced when hadrons are not produced.

Experiment	Collision Energy	Photon pT	Photon/Brems Ratio	$\begin{bmatrix} \mathbf{A}' & \mathbf{A}' \\ \mathbf{A}' & $
Exclusive measurements with knowledge of all pa				
K ⁺ p, CERN WA27,BEBC(1984)	70 GeV/c	Рт < 60 MeV/с	4.0 ± 0.8	
K ⁺ p, CERN NA22, EHS (1993)	250 GeV/c	Рт < 40 MeV/c	6.4 ± 1.6	00000000
π ⁺ p, CERN NA22, EHS (1997)	250 GeV/c	Рт < 40 MeV/с	6.9 ± 1.3	
π ⁻ p , CERN WA83,OMEGA(1997)	280 GeV/c	Рт < 10 MeV/c	7.9 ± 1.4	
π ⁻ p , CERN WA91,OMEGA(2002)	280 GeV/c	Рт < 20 MeV/c	5.3 ± 0.9	OCD meson
pp, CERN WA102,OMEGA(2002)	450 GeV/c	Рт < 20 MeV/c	4.1 ± 0.8	$\bigcirc QED meson X \rightarrow e^+e^-$
e+e-→hadrons CERN DELPHI(2010) with hadron production	~91 GeV (CM)	Рт < 60 MeV/c	~4.0	
e+e- → μ + μ - CERN DELPHI(2008) with no hadron production	~91 GeV (CM)	Рт < 60 MeV/c	~1.0	

(Table compiled by V. Perepelitsa, 2009)

Anomalous soft photon yield is proportional to the hadron yield

Number of anomalous soft photons $\approx \frac{150 \times 10^{-3}}{15}$ Number of produced hadrons $\approx \frac{1}{100}$

Anomalous soft photons (ASP) and QCD mesons arise likely from similar $q\bar{q}$ production mechanisms

pT spectrum of anomalous soft photons (ASP) suggests boson masses of ~18 and ~36 MeV

CYWong,ORNL

CYWong,ORNL

CYWong,ORNL³¹

Background-subtracted spectrum of diphoton invariant mass $M_{\gamma\gamma}$ in 6 angular bins with respect to the event plane for CMS PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV in the 40-50% centrality, with 1.6< p_T <2 GeV/c. (From B. A. Snook, Ph.D. Thesis, Vanderbilt University, 2014, Fig. 5.8)

 $0.60 \text{ GeV/c} < p_T < 0.7 \text{ GeV/c}$

ATOMKI and Dubna experiments provide promising evidence for QED mesons, pending future confirmations.

Implications of possible existence of the QED mesons in (3+1)D

- 1. There will be a new family of QED-confined $q\bar{q}$ composite particles, which are complex in nature, with additional degrees of freedom in spin-spin, spin-orbit, collective vibrations, collective rotations, flavor admixtures, molecular states, ...
- 2. Confinement occurs for q and \overline{q} not only in QCD but also in QED
- 3. Confinement may be an intrinsic property of the quarks. If so, a quark and an antiquarks interact with weak and gravitational interactions may lead to confined $q\bar{q}$ composite particles.
- 4. The QED interaction between a quark and an antiquark may be predominantly linear with a small Coulomb 1/r component, attractive for electric charges of opposite signs, and repulsive for the same sign. In such a case, there may be a stable *d-u-d* QED neutron, whereas the corresponding *u-d-u* QED proton is unstable. The QED neutron may be a good candidate for dark matter.

CONCLUSIONS

- 1. Theoretical predictions and experimental observations point to the possible existence of QED mesons, pending further confirmations.
- 2. The existence of QED mesons, if confirmed, will has important implications on the fundamental properties of quarks and their QED interactions.