

Overview of underground and ion accelerator facilities for nuclear (& particle) physics in Asia

Byungsik Hong (Korea University) Chair of Asian Nuclear Physics Association (ANPhA) <u>https://asiannuclearphysic.wixsite.com/anpha</u>

52nd International Symposium on Multiparticle Dynamics (ISMD2023) Károly Róbert Campus of MATE, Gyöngyös, Hungary, August 21-26, 2023

- Short history
 - Three preparatory meetings in Tokyo (2008), Seoul (2009) and Beijing (2009)
 - Establishment of ANPhA in Beijing, July 18, 2009
 - Original member countries/region (8)
 - Australia, China, India, Japan, Korea, Mongolia, Taiwan, and Vietnam
 - Objectives
 - To strengthen the *collaboration* among Asian nuclear research scientists through the promotion of nuclear physics and its transdisciplinary and applications
 - To promote the *education* in Asian nuclear science through mutual exchange and coordination
 - To coordinate among Asian nuclear scientists by actively utilizing existing research facilities
 - To discuss *future planning* of nuclear science facilities and instrumentation in Asia

ANPhA Introduction of ANPhA

- Regular activities
 - Annual board meeting together with either ANPhA Symposium or Conference

- During the pandemic period ANPhA continued the online meetings and ANPhA Symposia
- Return to the offline face-toface meeting in 2023
 - Date: Nov. 10-11, 2023
 - Venue: Institute for Basic Science (IBS), Daejeon City, South Korea

17thNov. 17, 2022Beijing, China13th ANPhA Symposid16thDec. 03, 2021Beijing, China12th ANPhA Symposid15thDec. 11, 2020Hong Kong, China11th ANPhA Symposid14thJun. 29, 2019Jeju Island, Korea10th ANPhA Symposid	um Online um Online
16thDec. 03, 2021Beijing, China12th ANPhA Symposit15thDec. 11, 2020Hong Kong, China11th ANPhA Symposit14thJun. 29, 2019Jeju Island, Korea10th ANPhA Symposit	um Online
15thDec. 11, 2020Hong Kong, China11th ANPhA Symposit14thJun. 29, 2019Jeju Island, Korea10th ANPhA Symposit	
14 th Jun. 29, 2019 Jeju Island, Korea 10 th ANPhA Symposit	um Online
	um
13 th Sep. 13, 2018 Beijing, China 9 th ANPhA Symposiu	im
12 th Sep. 24, 2017 Halong City, Vietnam ISPUN2017	
11 th Nov 24, 2016 Sendai, Japan 8 th ANPhA Symposiu	ım
10 th Oct. 24, 2015 Gyeongju, Korea 7 th ANPhA Symposiu	ım
9 th Nov. 07, 2014 Ho Chi Minh, Vietnam ISPUN2014	
8 th Feb. 19, 2014 Kolkata, India 6 th ANPhA Symposiu	ım
7 th Apr. 27, 2013 Taipei, Taiwan 5 th ANPhA Symposiu	ım
6 th Aug. 04, 2012 Adelaide, Australia 4 th ANPhA Symposiu	ım
5 th Nov. 27, 2011 Hanoi, Vietnam ISPUN2011	
4 th Apr. 30, 2011 Lanzhou, China 3 rd ANPhA Symposiu	im
3 rd Oct. 02, 2010 Seoul, Korea 2 nd ANPhA Symposiu	ım
2 nd Jan. 17, 2010 Tokai, Japan 1 st ANPhA Symposiu	m
1 st Jul. 18, 2009 Beijing, China	

Introduction of ANPhA

Establishment of the Division of Nuclear Physics (DNP) in Association of Asia-Pacific Physical Societies (AAPPS) in the 33rd Council meeting in Brisbane, Australia on Dec. 4, 2016

Past Chairs

↓ Hideyuki Sakai, Japan (2009-2011)
 ↓ Yanlin Ye, China (2012-2014)
 ↓ Dong-Pil Min, Korea (2014-2016)
 ↓ Kazuhiro Tanaka, Japan (2017-2019)
 ↓ Weiping Liu, China (2020-2022)

SMD 2023 Participation of the second second

Current management (2023-2025)

- Chair: Byungsik Hong (Korea)
- Vice Chairs: Anthony Thomas (Australia), Guoqing Xiao (China), Tomohiro Uesaka (Japan)
- Secretary to Chair: Yongsun Kim (Korea)

Board members (12 member countries/region)

• Australia: Anthony Thomas (Univ. of Adelaide)

Chair

Vice Chairs

Secretary

- China: Furong Xu (Peking Univ.), Guoqing Xiao (IMP), Yugang Ma (Fudan Univ.), Bing Guo (CIAE)
- India: Avinash C. Pandey (IUAC), Sumit Som (VECC), Vandana Nanal (TIFR)
- Japan: Kazuhiro Tanaka (KEK), Atsushi Hosaka (RCNP), Hirokazu Tamura (Tohoku Univ.), Tomohiro Uesaka (RIKEN)
- Korea: Byungsik Hong (Korea Univ.), Jin-Hee Yoon (Inha Univ.), Eun-Joo Kim (Jeonbuk Nat. Univ.)
- Taiwan: Wen-Chen Chang (Academia Sinica)
- Vietnam: Phan Viet Cuong (VINAGAMMA)
- Myanmar: Nyein Wink Lwin (Univ. of Mandalay)
- Kazakhstan: Kairat A. Kuterbekov (Eurasian Nat. Univ.)
- Hong Kong (China): Jenny Hui Ching Lee
- Mongolia: To be determined
- The Philippines: Denny Lane Sombillo (Univ. of the Philippines)

- White paper of ANPhA
 - Catalog of existing and planned accelerator facilities for nuclear physics in Asia-Pacific region
 - https://kds.kek.jp/indico/category/1706/

Nuclear Physics News (2020)

feature article

Ten Years of the Asian Nuclear Physics Association (ANPhA) and Major Accelerator Facilities for Nuclear Physics in the Asia Pacific Pacien

Nuclear Physics in the Asia Pacific Region Anthony W. Thomas^{1,6}, Andrew E. Stuchbery^{1,7}, Weiping Liu^{2,8}, Guoqing Xiao^{2,9}, Yugang Ma^{2,10}, Jun Cao^{2,11}, Avinash C. Pandey^{3,12}, B. K. Nayak^{3,13}, Sumit Som^{3,14}, Kazuhiro Tanaka^{4,15}, Tohru Motobayashi^{4,16}, Hirokazu Tamura^{4,17}, Atsushi Hosaka^{4,18} and Byungsik Hong^{5,19} ¹*ANPhA*, Australia ²*ANPhA*, China ³*ANPhA*, Japan ⁵*ANPhA*, Korea ⁶University of Adelaide, ANPhA Vice Chair, Australia

⁷Australian National University, Australia
 ⁸CIAE, ANPhA Chair, China
 ⁹IMP-CAS, ANPhA Board Member, China
 ¹⁰Fudan University, ANPhA Board Member, China
 ¹¹IHEP, China
 ¹²IUAC, ANPhA Board Member, India
 ¹³BARC-TIFR, ANPhA Board Member, India
 ¹⁴VECC, ANPhA Board Member, India
 ¹⁵KEK, ANPhA Board Member, Japan
 ¹⁶RIKEN, ANPhA Vice Chair, Japan
 ¹⁷Tohoku University/JAEA, ANPhA Board Member, Japan
 ¹⁸Osaka University, ANPhA Vice Chair, Korea

1. Introduction

Establishment of ANPhA

On 18 July 2009, the Asian Nuclear Physics Association (ANPhA) [1] was officially launched in Beijing by representatives from China, Korea, Japan, and Vietnam. The main objectives of ANPhA are clearly indicated in

- its bylaws:
 - to strengthen *collaboration* among the Asian communities in nuclear research through the promotion of basic nuclear physics and its applications,
 - to promote *education* in the Asian nuclear science communities through mutual exchange and coordination of resources,

- to encourage coordination among the Asian nuclear scientists for active utilization of existing research facilities, and
- to *discuss future planning* of the nuclear science facilities and instrumentation among member countries.

According to the brief summary report prepared by Prof. Hideyuki Sakai, which appeared in *Nuclear Physics News* [2], entitled "Establishment of the Asian Nuclear Physics Association (ANPhA)," the story of the first days of ANPhA was as follows:

... Initially, the need of an organization like ANPhA was raised from time to time at the meetings of the Commission on Nuclear Physics (C12) of the International Union of Pure and Applied Physics (IUPAP) as well as at its

3

- Completed construction in 2022
- Located in 240 km northwest of Melbourne (1,025 m deep)

Materials from Anthony Thomas

* *** * *

- SABRE South Collaboration
 - A new dark matter searching group (46 members across 5 institutions)
 - To measure the model independent modulation signal for dark matter caused by relative motion of the Earth through galactic halo
 - Expect to reach 5σ discovery sensitivity to a DAMA-like signal within two years

An engineering cutaway of the detector in its shield

ToF muon system

9.6 m2 × 5 cm EJ200 R13089 PMT × 16 @ 3.2 GS/s

Veto system

12k litres Linear Alkyl Benzene + PPO & Bias-MSB Stainless steel, non-thoriated welds, lumirror coating Oil-proof base R5912 PMT \times 18 @ 500 MS/s

DM target detector Low-activity NaI(TI) crystals R11065 low radioactivity PMT × ~14 @ 500 MS/s

Key requirement to understand modulation in background contributions: Particle ID, e.g., $\mu/\gamma/n$

17,000 litres LAB scintillator base from Nanjing via JUNO/IHEP.

JUNO LS properties [6]

- Photon attenuation > 20 m
- ²³⁸U/²³²Th/⁴⁰K <10⁻¹⁷ g/g

August 21-26, 2023

ANPhA Asian Nuclear Physics Association Underground Laboratory

- Yemilab: a new underground laboratory
 - Y2L (700 m deep) constructed in 2003 to house KIMS dark matter search experiment
 - Yemilab (1,000 m deep) constructed in 2022

- Run by Center for Underground Physics (CUP) of IBS
- Lab. space > 3,000 m² with 2.5 MW electricity

Dark matter search

- COSINE-100 experiment @ Y2L
 - Collaboration : Yale, CUP, Sheffield, San Paulo
 - DAMA/LIBRA annual modulation of standard halo model is rejected.

Sci. Adv. 7, 2699 (2021)

■ COSINE-200 experiment @ Yemilab

- Ultra-low background NaI crystals developed
- Aims a world best limit for low-mass WIMPproton spin-dependent interaction
- Expect to begin the data taking run in 2025

August 21-26, 2023

Neutrinoless double beta decay

- AMORE-II experiment @ Yemilab
 - 100 kg of ¹⁰⁰Mo for 5 years to reach $T_{1/2}^{0\nu} > 4.5 \times 10^{26}$ years Li₂¹⁰⁰MoO₄ crystals in 5 and 6 cm cylinder (~400 crystals)
 - Both phonons and photons measured by MMC+SQUID sensors DR inside shielding of 25cm Pb + 70cm of PE and water
 - 90-crystal run from 2023: Full scale (100 kg of ¹⁰⁰Mo) run from early 2025

Cf.) CUPID @ LNGS with 240 kg of ¹⁰⁰Mo

ANPhA Asian Nuclear Physics Association Underground Laboratory

China Jinping Underground Laboratory (CJPL)-II

Materials from Weiping Liu

ANPhA Asian Nuclear Physics Association Underground Laboratory

China Dark Matter Experiment (CDEX) Ge to search for light-WIMP: PRL 123, 221301 (2019) Dark photon: PRL 124, 111301 (2020)

Particle and Astrophysical Xenon Experiment (PandaX) Xe to search for dark matter: Nature 618, 47 (2023), PRL 129, 161803 (2022), PRL 127, 261802 (2021)

- Panda-II (2014): Dualphase Time Projection Chamber (TPC) with half-ton of ultra-high purity liquid Xe
- → PandaX-4T (2021): 5.75 tons of Xe
- → Panda-III (????): 200 kg
 to one ton of 90%
 enriched high-pressure
 gaseous ¹³⁶Xe in TPC

Cf.) nEXO

SD WIMP-nucleon elastic cross section PRL 127, 261802 (2021)

ISMD2023

Jinping Neutrino Experiment (JNE)

Solar, geo-, and supernova neutrinos

Prototype detector with 1-ton liquid scintillator (2017), arXiv:2212.13158

JUNA for nuclear astrophysics

W.P. Liu, et al., Sci. China 59, 5785 (2016)

¹⁹F(p,*αγ*)¹⁶O: PRL 127, 152702 (2021)

¹⁹F(p, γ)²⁰Ne: Nature 610, 656 (2022) Explain Ca in the oldest star!

¹³C(*α*,*n*)¹⁶O: PRL 129, 132701 (2022)

August 21-26, 2023

ISMD2023

Radioactive Ion Beam Factory (RIBF)

Slides from Hiroyoshi Sakurai

(15)

Beam Intensity of SRC as a function of year

16

SRC: Superconducting Ring Cyclotron World's First and Strongest K2600MeV

primary beams at 350 MeV/u

159 new isotopes created since 2007

BigRIPS: Superconducting RI beam Separator In-flight separator World's Largest Acceptance High magnetic rigidity 9 Tm

EURICA (2011-2016): EUroball-RIKEN Cluster Array

BRIKEN(2017-2021): He-3 detector array for beta-delayed neutron

HiCARI (2019-2020): Tracking Ge detectors for in-beam gamma spectroscopy

SEASTAR (2014-2017):

thick liq. H₂ +TPC+Nal

for in-beam gamma

spectroscopy

MINOS : Magic Numbers Off Stability

SpiRIT TPC (2015-): heavy-ion collision program for EOS

SAMURAI (2012-): neutron detectors + CsI+... for neutron correlation

IDATEN (2021-):

84 LaBr₃ (Ce) + 2 Cover Ge detectors to measure lifetime of excited states

MoU with 41 institutions and universities in 19 countries

ISMD2023

Rare isotope Accelerator complex for ON-line experiments (RAON)

- Materials from Seung-Woo Hong
 - Construction plan
 - Phase I [2011~2022]:
 Injector + ISOL +
 SCL3 + IF + Expt.
 Systems
 - R&D [2023~2025]:
 SCL2 cavities &
 modules
 - Phase II [Period to be determined
 ~2030 (?)]: Construction of SCL2

20

The 1st SCL3 beam commissioning (Oct. 7, 2022)

The 3rd SCL3 beam commissioning (May 23, 2023)

- Ar⁹⁺ beams accelerated by entire SCL3(QWR/HWR) on May 23
- Ar⁹⁺ beams delivered to the KoBRA target on May 31
 - \rightarrow First RI production in F3 of KoBRA by Ar+C
- SCL3 warm up and maintenance started from June.
- The beams plan to be delivered to KoBRA for experiments in early 2024.

- ISOL beam lines including sub-systems commissioned with a Cs ion source in Dec. 2021
- RI beam commissioning using SiC target in Mar. 2023)

Driver beam: 35~70 MeV proton beams up to 70 kW

- Target: SiC, BN, MgO, LaC₂, UCx, CaO, BeO, etc.
- Ion Source: Surface, RILIS, Plasma
- RIB: 6 < A < 160, 10 < K < 80 keV, 10⁸ pps (Sn), > 90% purity for experiments
 - Incident on RFQ of the post accelerator with 10 keV/u
 - Full remote maintenance system with TIS modularization

ISOL beam commissioning with ISOL

- ^{21,22,24,25}Na on March 3
- ^{26m}Al and ²⁰Na on May 23
- Proton beam: 70 MeV, 1.2 μ A
- SiC target temperature: \sim 1,400°C (Ta heater ohmic heating 1.8 kW)

Beijing Radioactive Ion beam Facility (BRIF) @ CIAE

Materials from Bing Guo

ANPhA Asian Nuclear Physics Association RIB Accelerator Facility

Beijing Radioactive Ion beam Facility (BRIF) @ CIAE

- Production of fission fragment RIBs (Rb, Sr, etc.)
- Number of produced RIB types: $24 \rightarrow 55$
- The shortest half-life of RIB with ISOL: 0.45 sec \rightarrow 0.17 sec
- Beam intensity: $10^3 \sim 10^{10}$ pps
- First RIB Expt.: 3 $\beta \gamma \alpha$ exotic decays in ²⁰Na [PRC103, L011301 (2021)]
- First Expt. with the post-accelerated Na beams on ⁴⁰Ca target [NST32, 53 (2021)]
- First CLS Expt. [NIMA1032, 166622 (2022)]

55

ANPhA Asian Nuclear Physics Association RIB Accelerator Facility

Heavy Ion Accelerator Facility (HIAF): 1st Phase

E_{B1}: 0.8 AGeV, 3×10¹⁰ppp ²³⁸U³⁵⁺ 1.75 AGeV, 7.5×10¹⁰ppp ⁷⁸Kr¹⁹⁺ 2.6~3.0 AGeV, 1.0×10¹¹ppp ¹⁶O⁶⁺

External target station High Energy Density Physics (HEDP) Nuclear matter study - CEE Hypernuclear physics High energy irradiation

BRing1: Booster Ring 1 Circumference: 600 m Rigidity: $34 \rightarrow 40$ Tm Large acceptance (200/100) Two planes painting injection Fast ramping rate (3-10 Hz)

★** **

Materials from Wenlong Zhan

HIAF-I: 2018-2025 Budget: 1.6+1.2B CNY

SRing: Spectrometer Ring
Circumference: 273 m
Rigidity: 15 → 20 Tm
Electron/Stochastic cooling
Precise measurement by two TOF
detectors, four operation modes

iLinac: Superconducting linac Length: 100 m Energy: 17~22 MeV/u (U^{35+~46+})

ANPhA Asian Nuclear Physics Association RIB Accelerator Facility

Heavy Ion Accelerator Facility (HIAF)

- Beam physics study
 - Highest pulse beam
- ECR ion source
 - 45 GHz 12 T Nb₃Sn SECRIS under assembling
- Key technology development for HI synchrotron
 - 0.3 mm chamber for high vacuum
 - High-gradient magnetic alloy RF for fast injection, etc.
 - Active power source for high repetition rate
 - Results
 - − Beam Intensity \rightarrow X100
 - Repetition rate \rightarrow ~10 Hz
 - Assembly time: years \rightarrow months
 - Tunning time: months \rightarrow days
- HFRS for in-flight fragmentation of projectiles
- High Accuracy Spectrometer at SRing
- CEE R&D and fabrications

Laboratory	Facility	Design Intensity	Heavy lon
BNL	AGS Booster		Au ³²⁺
JINR	NICA Booster	4×10 ⁹	Au ³²⁺
GSI	SIS18	1.0×10 ¹¹	U ²⁸⁺
FAIR	SIS100	4.0×10 ¹¹	U ²⁸⁺
IMP	HIAF-SRing	5/20×10 ¹¹	U/Bi ⁽³⁵⁻⁴⁵⁾⁺
IMP	HIAF-BRing-SRing	1/5×10 ¹² 2/12×10 ¹²	U/Bi ⁽³⁵⁻⁴⁵⁾⁺

Hadron Accelerator Facility

Materials from Kazuhiro Tanaka

- Upgrade of J-PARC for heavy-ion beams
 - New heavy-ion injector (LINAC and BOOSTER)
 - New experimental area and spectrometers
- Staging plan
 - On-going
 - pA collisions using existing beamline and spectrometer (Vector meson production in e^+e^- decay modes)
 - Upgrade of the spectrometer for hadron measurements
 - Phase I
 - New LINAC and reuse of KEK-PS 500 MeV booster
 - Upgrades of the existing spectrometer
 - Beam Intensity: 10⁸ Hz for Au
 - Phase II
 - New booster and new spectrometer
 - Final configuration

Heavy-ion annex

Phase I

Phase II

HI Booster Ring

- Nuclear physics facilities in Asia in the construction, commissioning, upgrade, or operational stage:
 - Underground facilities: SUPL (Australia), CJPL-II (China), Yemi Lab. (Korea)
 - RIB accelerators: BRIF, JUNA, HIRFL, HIAF (China), RIBF, RCNP (Japan), RAON (Korea)
 - Hadron accelerators: HIAF (China), J-PARC (Japan)
 - Photon & electron accelerators: Spring-8, ELPH (Japan)
- The facilities in Asia, Europe, and U.S.A. are overlapped or complimentary. For example,
 - INFN Gran Sasso National Laboratory (LNGS) in Europe
 - The Isotope mass Separator On-Line facility (ISOLDE) at CERN in Europe
 - Facility for Rare Isotope Beams (FRIB) in Michigan State University in U.S.A.
 - Electron-Ion Collider (EIC) at BNL in U.S.A.

• The collaboration among different continents must be greatly beneficial to all of us!

