Electromagnetic probes in ALICE

Daiki Sekihata for the ALICE Collaboration Center for Nuclear Study, the University of Tokyo ISMD2023, 25.Aug.2023

Introduction

- Unique tools to access early stage of the collision without strong interaction, unlike hadrons.
- Photons and dileptons are emitted from all stages.
- EM signals = excess beyond the known hadronic sources

ALICE apparatus at the LHC

• Inner Tracking System (ITS) - Vertexing - Tracking • Time Projection Chamber (TPC) - Tracking - Particle identification Time of Flight (TOF) – - Particle identification V0 at forward rapidity-- Triggering - Multiplicity determination

Direct photons in Pb-Pb at 2.76 TeV

- Improved results from the previous publication (PLB 754 (2016) 235-248)
 - Larger statistics : 20M events in 0-10%
 - Data-driven material budget correction (arXiv:2303.15317)
- Most precise direct photon results in ALICE ever
- Consistent with NLO pQCD calculation at high $p_{\rm T}$
- Excess of direct photon production beyond pQCD calculation for $p_{\rm T}$ < 4 GeV/*c*
 - Thermal + pre-eq. photons

25.Aug.2023 (ISMD2023)

Direct photons in Pb-Pb at 5.02 TeV

- Consistent with NLO pQCD calculation at high $p_{\rm T}$
- Consistent with the latest model
 PRC 105 (2022) 014909
 - Prompt + pre-eq. + thermal photons
 - Outlook: analyzing full statistics in Pb-Pb at 5.02 TeV
 - 100M events in 0-10%
 - 90M events in 30-50%
 - -- v₂ measurement

Comparison with theoretical model

- PRC 105 (2022) 014909, C.Gale et al.
 Prompt + pre-equilibrium + thermal radiation from QGP and hadronic gas
 - Good agreement between ALICE data and the model
 - PHENIX data tend do be higher than the model at low $p_{\rm T}$

Direct photon in small system

• First measurement of direct photons in small systems at low $p_{\rm T}$ in ALICE

- Direct photon fraction ~ 0.01

- Data can be reproduced by the model with and without thermal contribution in inelastic pp collisions.
- Provide constraints to calculations in high-multiplicity pp collisions

Dielectron production in central Pb-Pb collisions at 5.02 TeV

- Comparison to hadronic cocktails
 - N_{coll}-scaled heavy-flavor (HF) (PRC 102 (2020) 055204)
 - Modified HF by R_{AA} of c/b \rightarrow e (PLB 804 (2020) 135377)

- Hint of an excess at $m_{\rm ee} < 0.5 \, {\rm GeV}/c^2$
 - Consistent with thermal radiation from hadronic gas

 Need topological separation between QGP radiation (prompt) and HF (non-prompt, cτ~150 µm) in the IMR

IMR: $1.2 < m_{ee} < 2.6 \text{ GeV}/c^2$

25.Aug.2023 (ISMD2023)

Daiki Sekihata (CNS, U.Tokyo)

Dielectron DCA_{ee} spectrum in central Pb-Pb collisions at 5.02 TeV

Low-p_{T,ee} dielectron excess in peripheral Pb-Pb collisions

25.Aug.2023 (ISMD2023)

• Excess beyond hadronic cocktail

- Larger significance in peripheral collisions
- Excess compared with photon-photon interaction
 - All models can reproduce the data within uncertainties.
 - STARlight tends to underestimate the data

QED : leading-order QED

Wigner : Wigner functions in momentum and impact-parameter space STARlight : equivalent photon approximation approach

10

Daiki Sekihata (CNS, U.Tokyo)

ALICE Run 3

- ALICE recorded huge statistics in 2022 and 2023.
 Already 10 times larger than that in Run 2
- Clear dielectron signals in pp at 13.6 TeV
 - π^0 and η Dalitz decays
 - $\omega/\rho/\phi$ peak
 - $J\!/\psi$ and $\psi(2S)$ peak
 - -Y peak

- HF continuum in the intermediate and high mass regions

25.Aug.2023 (ISMD2023)

Future plan : ALICE 3

- Advanced silicon technology
 - High-rate data acquisition
 - Precise vertexing with retractable inner tracker
 - Particle identification down to low $p_{\rm T}$

Daiki Sekihata (CNS, U.Tokyo) ALI-SIMUL-540877

Summary

- ALICE measured both real and virtual photons to study early stage of hot and dense QCD matter.
 - Direct photons from small to large systems
 - DCA_{ee} analysis to separate heavy-flavor and thermal radiation
 - Dielectron excess at very low $p_{T,ee}$ in peripheral collisions with hadronic overlap
- EM probes become even more exciting in Run 3, 4 and ALICE 3.
 - High-rate data acquisition
 - Precise vertexing with retractable inner tracker
 - Particle identification down to low $p_{\rm T}$

Low-*p*_{T,ee} dielectron excess in peripheral Pb-Pb collisions

 $\frac{\mathrm{d}N_{\mathrm{ee}}}{\mathrm{d}m_{\mathrm{ee}}} \left(\mathrm{GeV}/\mathrm{c}^2\right)^{-1}$ 10 ALICE 70-90% Data Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV 10⁻³⊧ 50–70% Data $\times 10^{-3}$ Cocktail -
2
10 10^{-6} 10^{-7} 10^{-8} 10⁻⁹ $p_{T,e} > 0.2 \text{ GeV}/c, |\eta_e| < 0.8 p_{T,ee} < 0.1 \text{ GeV}/c$ 10² Data/Cocktail 10 0.5 2.5 0 1.5 2 m_{ee} (GeV/ c^2) ALI-PUB-544495

- An excess beyond hadronic cocktail
 - larger significance in peripheral collisions

25.Aug.2023 (ISMD2023)

$p^{2}_{T,ee}$ spectra in peripheral Pb-Pb collisions

- The lowest-order QED and Wigner formalism can produce the excess yields.
- STARlight falls below data point p²_{T,ee} > 6.25e-4 (GeV/c)²

- k_{T} -factorization approach used in STARlight lacks impact parameter dependences which is clearly visible in the experimental measurements

• The data support the statement that the $p_{T,ee}$ broadening observed in hadronic heavy-ion collisions, in comparison to those in UPC, originates predominantly from the initial EM field strength that varies significantly with impact parameter.

Inverse slope T_{eff} of Nonprompt direct photon $\gamma_{AA}^{Nonprompt} = \gamma_{AA}^{direct} - \langle N_{coll} \rangle \times \gamma_{pp}^{direct}$

25.Aug.2023 (ISMD2023)

- Averaged temperature over space-time evolution
 - early temperature
 - expansion velocity (i.e. blue shift)
- First nonprompt direct photon at the LHC

 $-\gamma^{nonprompt} = \gamma^{direct} - \gamma^{pQCD}$

Direct photons

- Prompt photon from initially hard scatterings
- Pre-equilibrium photon
- Thermal photon from QGP + hadronic gas
- Large background from hadronic decays

Sources are distinguishable by different p_{T} ranges:

yield, v_2 and inverse slope with blueshift provide information on early stages + models

Dielectrons ($\gamma^* \rightarrow e^+e^-$)

- Invariant mass not affected by radial flow of expanding medium
- \rightarrow accessible to early stage of QGP without blueshift
- Thermal radiation from hadronic gas
- \rightarrow sensitive to in-medium spectral function of ρ meson
- Smaller production yield than that of real photon
- Large backgrounds from:
 - light-flavor hadrons
 - semileptonic decays of correlated heavyflavor hadrons

Future plan : ALICE3

- Strong charm rejection thanks to silicon technique
- Accessible to in-medium SF of ρ meson
 study chiral symmetry restoration
- Thermal radiation from early stage of QGP
 determine QGP properties at early stage
- Pre-equilibrium radiation
 - how equilibrated system is formed from purely gluonic system

LI-SIMUL-540881