

Non-prompt J/ ψ production as a function of multiplicity in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Wenda Guo for the ALICE Collaboration

Central China Normal University & University of Bergen

ISMD 2023 25/08/23, Gyöngyös, Hungary

Quarkonium production in pp collisions

arXiv:2211.04384

J/ψ, ψ(nS), Y(nS)

- bound state of heavy-quark pair
- Heavy-quarks are produced in initial hard partonic scattering
 - Experience full evolution of heavy-ion collision
 - Probes to study properties of hot and dense medium, i.e. quark-gluon plasma (QGP)

- A meaningful interpretation of heavy-ion collisions relies on the study of small systems (as pp and p–Pb collisions)
 - To understand production mechanism
 - Reference for Pb–Pb collisions

Prompt and non-prompt J/ψ

ALICE pp \sqrt{s} = 13 TeV • Inclusive J/ ψ , |y| < 0.9 L_{int}^{MB} = 32.2 nb⁻¹ ± 1.6%

 $L_{\rm int}^{\rm EMCal} = 8.3 \ {\rm pb}^{-1} \pm 2.0\%$

Eur. Phys. J. C 81 (2021) 1121

- (µb/(GeV/c))

 $\frac{d^2\sigma}{\sqrt{d\rho_1}}$

 10^{-2}

10⁻³

- Prompt :
 - produced in the collision
- Non-prompt :
 - decayed from B hadron

- Non-prompt J/ψ production allows:
 - Separation of prompt/non-prompt charmonium production
 - Access beauty hadron production.

ICEM: V. Cheung et al, Phys. Rev. D 98 (2018) 114029 NRQCD: Ma et al, Phys. Rev. Lett. 106 (2011) 042002 NRQCD+CGC: Ma et al, Phys. Rev. Lett. 113(19) (2014) 192301 NRQCD CS+CO: Butenschoen et al, Phys. Rev. Lett. 106 (2011) 022003 NRQCD kT factorisation: Lipatov et al, Eur. Phys. J. C 80(4) (2020) 330 FONLL: M. Cacciari et al, JHEP 10 (2012) 137

prompt J/ ψ ICEM

Multiplicity dependence of J/ψ production

- Multiplicity dependent analysis can give insights into
 - Multiparton Interactions (MPI)
 - Interplay of hard components (NQ) and underlying event (Nch)
- Key observable to disentangle initial and final state effects
- Prompt and non-prompt J/ψ vs multiplicity measurements
 - possible estimation of B-hadron production vs multiplicity
 - \circ more accurate calculation on prompt J/ ψ

Wenda Guo 25/08/23 ISMD2023, Gyöngyös, Hungary

Separation of prompt and non-prompt J/ψ

Separation of prompt and non-prompt J/ψ

- Analysis technique: based on maximization of 2D likelihood function, on invariant mass and pseudoproper decay length (*x*) fitted simultaneously

- $f_{\rm B}$ ' is the raw fraction of non-prompt J/ ψ , which is extracted from the likelihood fit, needs to be corrected by acceptance times efficiency which could be slightly different for prompt and non-prompt J/ ψ
- Efficiency and acceptance correction formula:

$$f_{\mathbf{B}} = (1 + rac{1 - f_{\mathbf{B}}^{'}}{f_{\mathbf{B}}^{'}} \cdot rac{\langle A imes m{arepsilon}
angle_{\mathbf{B}}}{\langle A imes m{arepsilon}
angle_{\mathbf{Prompt}}})^{-1}$$

 $\circ \qquad f_{\rm B} \text{ is the fraction of non-prompt J/} \psi \text{ after} \\ \text{efficiency and acceptance correction}$

Separation of prompt and non-prompt J/ψ

- Analysis technique: based on maximization of 2D likelihood function, on invariant mass and pseudoproper decay length (*x*) fitted simultaneously

- $f_{\rm B}$ is the raw fraction of non-prompt J/ ψ , which is extracted from the likelihood fit, needs to be corrected by acceptance times efficiency which could be slightly different for prompt and non-prompt J/ ψ
- Efficiency and acceptance correction formula:

$$f_{\mathbf{B}} = (1 + rac{1 - f_{\mathbf{B}}^{'}}{f_{\mathbf{B}}^{'}} \cdot rac{\langle A imes m{arepsilon}
angle_{\mathbf{B}}}{\langle A imes m{arepsilon}
angle_{\mathbf{Prompt}}})^{-1}$$

• $f_{\rm B}$ is the fraction of non-prompt J/ ψ after efficiency and acceptance correction

$f_{\rm B}$ fraction vs multiplicity in pp at \sqrt{s} = 7 TeV

- Fraction of non-prompt J/ ψ in pp collisions at \sqrt{s} = 7 TeV shows no multiplicity dependence
- The results at \sqrt{s} = 7 TeV can reach 4 times the average multiplicity (higher multiplicity reach expected at \sqrt{s} = 13 TeV thanks to high-multiplicity triggered data)
- Prompt J/ ψ production vs multiplicity shows an increase with charged-particle multiplicity, which is faster than linear
- Hint for similar faster than linear increase of the yields with the multiplicity for non-prompt J/ψ , however uncertainties are large to conclude

- Fraction of non-prompt J/ ψ vs p_{τ} at \sqrt{s} = 13 TeV is measured.
- Non-prompt and prompt J/ ψ cross sections are computed by combining non-prompt J/ ψ fractions and inclusive J/ ψ measurements
- The cross sections are consistent with different model calculations.
- Beauty-quark production cross sections can be inferred from non-prompt J/ψ measurements

Inclusive J/ψ production: Eur. Phys. J. C 81 (2021) 1121 FONLL: M. Cacciari et al, JHEP 10 (2012) 137 ICEM: V. Cheung et al, Phys. Rev. D 98 (2018) 114029 NRQCD: Ma et al, Phys. Rev. Lett. 106 (2011) 042002 NRQCD+CGC: Ma et al, Phys. Rev. Lett. 113(19) (2014) 192301 NRQCD CS+CO: Butenschoen et al, Phys. Rev. Lett. 106 (2011) 022003 NRQCD kT factorisation: Lipatov et al, Eur. Phys. J. C 80(4) (2020) 330

Towards $f_{\rm B}$ fraction measurement vs multiplicity in pp at \sqrt{s} = 13 TeV

• Fraction of non-prompt J/ ψ vs multiplicity in pp collisions at \sqrt{s} = 13 TeV is measured with ALICE, via 2D maximum likelihood fit method.

いた。

Significantly higher multiplicity region reach compared to \sqrt{s} = 7 TeV thanks to high-multiplicity triggered events, reaching **7** *times* the average multiplicity (4 times at \sqrt{s} = 7 TeV).

ALICE

ALI-PERF-539349

Summary and outlook

- Measurement of the fraction of non-prompt J/ ψ vs multiplicity in pp collisions at \sqrt{s} = 13 TeV is ongoing and will be released soon.
- Prompt and non-prompt J/ψ yields vs multiplicity will be evaluated by combining with existing inclusive J/ψ measurements.

Thanks for your attention!

Back up

Wenda Guo 25/08/23 ISMD2023, Gyöngyös, Hungary

J/ψ reconstruction strategy

- Decay channel : $J/\psi \rightarrow e+e-$
- Track selection:
 - track selected via criteria shown in the right table, concerning
 - track kinematics
 - reconstruction quality
 - track PID
- Pair selection
 - $\circ |y| < 0.9$
 - $\circ p_{T} > 1 \text{ GeV/c}$

Variables	Cut values
n	< 0.9
p _T	>1.0 GeV/ <i>c</i>
DCAxy	<0.5 cm
DCAz	<2.0 cm
TPC nσ _e	[-3,3]
TPC $n\sigma_{\pi}$	>3.5
TPC nσ _p	>3.5
reject kinks	yes
request ITS refit	yes
request TPC refit	yes
request SPDany	yes
TPC χ ²	[0,4]
ITS χ ²	[0,36]
TPC Ncls.	[70,160]
ITS Ncls. shared	[0,1]