Relativistic two-particle problem in the Lagrange formalism

52nd Interna Snal Symposium on Multiparticle Dynamics (ISMD2
August 2023, Gyongyös , Hungary

Contents

(1) Introduction
(2) Spinless particles
(3) Spin-1/2 particles
(4) Application: Para-positronium in a magnetic field
(5) Conclusion
(0) Acknowledgments

Introduction

Non－relativistic two－body problem－OK

Introduction

Relativistic two-body problem - ???

Introduction

NON-RELATIVISTIC DYNAMICS v.s. RELATIVISTIC DYNAMICS

Time is a variable rather than a parameter.
\Downarrow
Relativity of simultaneity.
\Downarrow
Non-relativistic approach is invalid

Introduction

SOLUTION

Poincare Invariant

$$
p_{i}^{2}-m_{i}^{2}=\Phi_{i}\left(p_{1}, m_{1} ; p_{2}, m_{2}, q_{12} \ldots\right)
$$

\Downarrow
Dirac Hamiltonian constraint dynamics
\Downarrow
Ph. Droz-Vincent, I.T.Todorov, M. Kalb, P. van Alstine, A.Komar, H. Sazdjian, H.W.Crater, C.-Y.Wong, ...
\Downarrow
Lagrange Formalism - the current talk

Introduction

Both interaction and external fields

$$
p^{\mu} \rightarrow p^{\mu}+A^{\mu}, \quad m \rightarrow m+S
$$

Introduction

Laboratory v.s. Center Mass Frames

$$
\begin{gathered}
X=\mu_{1} x_{1}+\mu_{2} x_{2}, \quad x=x_{2}-x_{1}, \quad x_{1}=X-\mu_{2} x, \quad x_{2}=X+\mu_{1} x \\
P=p_{1}+p_{2}, \quad p=\mu_{1} p_{2}-\mu_{2} p_{1}, \quad p_{1}=\mu_{1} P-p, \quad p_{2}=\mu_{2} P+p \\
\mu_{1}=\frac{1+\frac{m_{1}^{2}-m_{2}^{2}}{M^{2}}}{2}, \quad \mu_{2}=\frac{1-\frac{m_{1}^{2}-m_{2}^{2}}{M^{2}}}{2} \\
\mu_{1}+\mu_{2}=1, \quad M=\left|p_{1}+p_{2}\right|=|P| \\
\text { (Todorov) }
\end{gathered}
$$

3-rd Newton law

$$
P p=0, \quad(P p) \phi=0
$$

Spinless particles

The principles of the least action Spinless particles

$$
\mathfrak{A}_{1+2}=\frac{\lambda_{1}}{2} \mathfrak{A}_{1}(\text { ext.f. }+ \text { int. })+\frac{\lambda_{2}}{2} \mathfrak{A}_{2}(\text { ext.f. }+ \text { int. })
$$

1) Multiply by

$$
\begin{gathered}
\int d x \phi_{1,2}^{*}(x) \phi_{1,2}(x)=C_{1,2}<+\infty, \\
\lambda_{1,2} C_{1,2}=1
\end{gathered}
$$

2) Go to the momentum representation

Spinless particles

Breit frame

$$
\boldsymbol{p}_{1}+\boldsymbol{p}_{2}=0, \quad p_{1}^{0}-p_{2}^{0}=0, \quad \text { assures } \quad P p=0
$$

$$
\left(-(\boldsymbol{p}+\mathcal{A})^{2}+\left(E_{w}+\mathcal{A}^{0}\right)^{2}-\left(m_{w}+\mathcal{S}\right)^{2}\right) \varphi(\boldsymbol{r})=0
$$

$$
E_{w}=\frac{1}{2 M}\left(M^{2}-\left(m_{1}^{2}+m_{2}^{2}\right)\right), \quad m_{w}=\frac{m_{1} m_{2}}{M}, \quad M=\left|p_{1}+p_{2}\right|
$$

Covariant in \mathcal{R}^{3+1}

Spin - $\frac{1}{2}$ particles

The principles of the least action Spin- $\frac{1}{2}$ particles

$$
\mathfrak{A}_{1+2}=\frac{\lambda_{1}}{2} \mathfrak{A}_{1}(\text { ext.f. }+ \text { int. })+\frac{\lambda_{2}}{2} \mathfrak{A}_{2}(\text { ext.f. }+ \text { int. })
$$

1) Multiply by

$$
\begin{aligned}
& \frac{\lambda_{1}}{\left(2 \int d x_{1} \bar{\Psi}_{1}\left(x_{1}\right)\left(m_{1}+S\left(x_{1}\right)\right) \Psi_{1}\left(x_{1}\right)\right)\left(\int d x_{2} \bar{\Psi}_{2}\left(x_{2}\right) \Psi_{2}\left(x_{2}\right)\right)}=1, \\
& \frac{\lambda_{2}}{\left(2 \int d x_{2} \bar{\Psi}_{2}\left(x_{2}\right)\left(m_{2}+S\left(x_{2}\right)\right) \Psi_{2}\left(x_{2}\right)\right)\left(\int d x_{1} \bar{\Psi}_{1}\left(x_{1}\right) \Psi_{1}\left(x_{1}\right)\right)}=1
\end{aligned}
$$

2) Go to the momentum representation

Spin - $\frac{1}{2}$ particles

Breit frame

$$
\boldsymbol{p}_{1}+\boldsymbol{p}_{2}=0, \quad p_{1}^{0}-p_{2}^{0}=0
$$

$$
\begin{aligned}
\left(-(\boldsymbol{p}+\mathcal{A})^{2}+\right. & \left.\left(E_{w}+\mathcal{A}^{0}\right)^{2}-\left(m_{w}+\mathcal{S}\right)^{2}\right) \varphi_{i}(\boldsymbol{r})=0 \\
& i=1,2, \ldots, 16
\end{aligned}
$$

Spin $-\frac{1}{2}$ particles

We wish to be !!!

$$
\left[\left(p_{\nu}+\mathcal{A}_{\nu}\right) g^{\nu \mu}\left(p_{\mu}+\mathcal{A}_{\mu}\right)-\left(m_{w}+\mathcal{S}\right)^{2}\right] \varphi_{i}(\boldsymbol{r})=0 .
$$

$$
\begin{aligned}
& \hat{\Gamma}^{0}=\mu_{1} \stackrel{(1)}{\gamma}_{0}^{0} \otimes \stackrel{(2)}{I}+\mu_{2} \stackrel{(2)}{\gamma}_{\otimes}^{(1)} \stackrel{(1)}{I}, \\
& \hat{\gamma}=\stackrel{(2)}{\gamma} \otimes \stackrel{(1)}{I}-\stackrel{(1)}{\gamma} \otimes \stackrel{(2)}{l}
\end{aligned}
$$

Spin $-\frac{1}{2}$ particles

$$
\begin{aligned}
& \hat{\Gamma}^{0} \hat{\Gamma}^{0}+\hat{\Gamma}^{0} \hat{\Gamma}^{0}=2 \stackrel{(1+2)}{l} ; \\
& \hat{\Gamma}^{0} \hat{\gamma}^{a}+\hat{\gamma}^{a} \hat{\Gamma}^{0}=0, \quad a=1,2,3 ; \\
& \hat{\gamma}^{a} \hat{\gamma}^{b}+\hat{\gamma}^{b} \hat{\gamma}^{a}=-4 \delta^{a b} \stackrel{(1+2)}{l}+4\left(s_{1}^{a} s_{2}^{b}+s_{2}^{b} s_{1}^{a}+s_{2}^{a} s_{1}^{b}+s_{1}^{b} s_{2}^{a}\right) \stackrel{(1+2)}{l} .
\end{aligned}
$$

Spin $-\frac{1}{2}$ particles

$$
\left(\Gamma^{0}\left(E_{w}+\mathcal{A}^{0}\right)-\boldsymbol{\Gamma}(\hat{\boldsymbol{p}}+\mathcal{A})+\left(\boldsymbol{s}_{1}+\boldsymbol{s}_{2}\right)(\hat{\boldsymbol{p}}+\mathcal{A})-\left(m_{w}+\mathcal{S}\right)\right) \Psi(\boldsymbol{r})=0
$$

where $\Psi(\boldsymbol{r})$ is the 16 component spinor.

$$
\text { Covariant in } \mathcal{R}^{3+1} \cup \mathcal{S}^{2}\left\{\mathcal{R}^{3}\right\}
$$

Application: Para-positronium in a magnetic field

$$
\begin{gathered}
a_{B} \gg a=(|e| B)^{-1 / 2} \\
\left(\gamma^{0}\left(E_{w}+\mathcal{A}^{0}\right)-\gamma(\boldsymbol{p}+\mathcal{A})-\left(m_{w}+\mathcal{S}\right)\right) \Psi(\boldsymbol{r})=0
\end{gathered}
$$

$$
\begin{aligned}
& \left(\Delta+\frac{2(4 \pi \alpha) E_{w}}{r}+\frac{(4 \pi \alpha)^{2}}{r^{2}}+\frac{i}{2} \nabla(\boldsymbol{B} \times \boldsymbol{\rho})-\frac{1}{4} e^{2} B^{2} \rho^{2}\right) \Psi(\boldsymbol{r}) \\
& =\left(m_{w}^{2}-E_{w}^{2}\right) \Psi(\boldsymbol{r})
\end{aligned}
$$

$$
A^{0}=-\frac{4 \pi \alpha}{r}, \quad \mathcal{A}=\frac{1}{2}(\boldsymbol{B} \times \boldsymbol{\rho}), \quad \boldsymbol{r}=\boldsymbol{\rho}+\boldsymbol{e}_{z} z
$$

Application: Para-positronium in a magnetic field

$$
\begin{aligned}
& \text { Ground state } \\
& \psi_{m=0, n=0}(\rho)=\frac{1}{a \sqrt{2 \pi}} e^{-\frac{\rho^{2}}{4 a^{2}}}
\end{aligned}
$$

Let us look for a solution

$$
\begin{array}{r}
\Psi(\boldsymbol{r})=\psi(z) \psi_{m=0, n=0}(\boldsymbol{\rho}) \\
\psi(z)=\sqrt{\frac{k}{a}} \exp (-k|z| / a)
\end{array}
$$

where k is a positive constant, so that $k^{2}=\varepsilon$.

Application: Para-positronium in a magnetic field

$$
k=2^{3 / 2}(4 \pi \alpha) m_{w} \varepsilon_{w} a \ln \left(a_{B} / a\right)+(4 \pi \alpha)^{2} \frac{\pi^{3 / 2}}{\sqrt{2}}
$$

1)

$$
\begin{gathered}
m_{e} a \gg \alpha, \quad k=2^{3 / 2}(4 \pi \alpha) m_{e} a \ln \left(a_{B} / a\right) \\
E_{w}=\frac{m_{e}}{2}\left(1+\left(2 /\left(m_{e} a\right)^{2}-2(4 \pi \alpha)^{2} \ln ^{2}\left(a_{B} / a\right)\right)\right. \\
(\text { Elliott, Loudon })
\end{gathered}
$$

2)

$$
m_{e} a \ll \alpha, \quad k=(2 \pi)^{7 / 2} \alpha
$$

- $E_{w}=\frac{1}{a^{2}}\left(1+\left(m_{e} a\right)^{4} / 2-(2 \pi)^{7} \alpha^{4} / 2\right) \simeq \frac{1}{a^{2}}\left(1-(2 \pi)^{7} \alpha^{4} / 2\right)$.

Conclusion

(1) The two-body relativistic problem is studied in terms of the principle of the least action beyond the constraint Hamiltonian dynamics
(2) In the developed approach the motion equation for a spinless particle and the Dirac-like equation are derived.
(3) The developed approach is applied for study a para-positronium in a strong magnetic field.

Acknowledgments

THANK YOU FOR YOUR ATTENTION!!!

