Measurement of Two-Particle Correlations and Flow Coefficients in High Multiplicity e⁺e⁻ Collisions Using Archived ALEPH Data at 91-209 GeV

Yu-Chen (Janice) Chen, Yi-Chen, Michael Peters, Pao-Ti Chang, Yen-Jie Lee, and Marcello Maggi

in collaboration with Austin Baty, Anthony Badea, Chris McGinn, Jesse Thaler, Gian Michelle Innocenti, and Tzu-An Sheng

ISMD 2023, Gyöngyös, Hungary, Aug. 24th

Negligible beam remnant

Controllable initial-state QED radiations

Advantages of e^+e^- collisions to study QCD

Structureless e^+/e^-

No uncertainties from 0 beam PDF

No MPI, no pileup 0

Color-neutral e^+/e^-

- No gluonic initial state radiations
- No initial state correlation 0 effects (such as CGC)

The ALEPH detector and sample

- Re-analyze with MIT Open Data format 0
- ALEPH archived Pythia6 MC: for corrections and the comparison baseline

* There are also Z-resonance events in LEP2 sample

Charged multiplicity distributions

* N^{Offline}: number of charged particles after selections

ISMD 2023, Gyöngyös, Hungary

Unfolded thrust distribution — Good quality data LEP1

Further comparisons with MC — Anti-k_T jet measurements

Jet energy spectrum

Rising edge sensitive to jet function

Room for improvement already in $e^+e^-!$

Jet substructure energy sharing Z_G

ISMD 2023, Gyöngyös, Hungary

Cleanest tests for heavy-ion phenomenology & QCD

Two-particle correlations (2PC)

- Soft probe to study Quark-Gluon Plasma 0 (QGP) in HI collisions
- Spatial anisotropy can happen as: 0

Initial density fluctuation Hydrodynamical expansion of perfect-fluid-like QGP

Ridge-like signals (spatial anisotropy) 0 appears in not only AA, but also pA & pp!

e^+e^- collisions is clean!

- Onsets of azimuthal anisotropic 0 correlations?
- Useful test with the absence of initial state 0 correlations effect E Verain en die and in the second and the second an

Analysis method: 2PC observable construction

Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle)

Analysis method: 2PC observable construction

Two-particle correlation function (per-trigger-particle associated yield)

Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle)

trigger particle

 $S(\Delta\eta, \Delta\phi)$ $B(\Delta\eta, \Delta\phi)$ = B(U, U)

Long-range (1.6 $\leq |\Delta\eta| \leq 3.2$) correlations

 $N_{\rm trk} \geq 30$

<u>e⁺e⁻→ hadrons, $\sqrt{s}=91$ GeV MOD</u> $e^+e^- \rightarrow hadrons, \sqrt{s}=91 \text{ GeV}$ **ALEPH Archived Data ALEPH Archived Data** $C_{ZYAM}^{Data} = 1.61$ $C_{ZYAM}^{Data} = 1.28$ 0.4 $C_{ZYAM}^{PYTHIA} = 1.64$ $C_{ZYAM}^{PYTHIA} = 1.30$ 0.3 C CC 2XAM Thrust coordinates Thrust coordinates Archived PYTHIA 6.1 Archived PYTHIA 6.1 20.2 $1.6 < |\Delta \eta| < 3.2$ 1.6 < |Δη| < 3.2 N_{trk} ≥ 35 ر اتو - <mark>ک</mark> N_{trk} ≥ 30 0.5 1.5 2 2.5 1.5 0.5 $\Delta \phi$ $\Delta \phi$

Good data/MC agreement!

LEP1 e^+e^- 2PC [Phys. Rev. Lett. 123, 212002 (2019)]

ISMD 2023, Gyöngyös, Hungary

 $N_{\rm trk} \ge 35$

Results with high-multiplicity events LEP1

No significant ridge-like signal enhancement! LEP1 e^+e^- 2PC [Phys. Rev. Lett. 123, 212002 (2019)]

ISMD 2023, Gyöngyös, Hungary

High collision energy LEP2

Inclusive in multiplicity

ISMD 2023, 2 Gyöngyös, Hungary

High collision energy & high multiplicity LEP2

ISMD 2023,3 Gyöngyös, Hungary

- To quantify the excess, Fourier fit on the 1-dim. correlation: 0 $Y(\Delta\phi) = \frac{1}{N_{\text{trig}}} \frac{dN^{\text{pairs}}}{d\Delta\phi} = \frac{N^{\text{assoc}}}{2\pi} \left(1 + \sum_{n=1}^{n_{\text{max}}} 2V_{n\Delta}\cos(n\Delta\phi)\right)$
- The flow coefficients v_n correspond to different mode expansions: 0 $v_n \{2, 1.6 < |\Delta \eta| < 3.2\} = \text{sign}(V_{n\Delta}) \sqrt{V_{n\Delta}}$

Elliptic flow

Triangular flow

Flow coefficients — quantification of anisotropy

Flow coefficients (v_2)

CMS pp [PLB 765 (2017) 193]

 $v_{2, \text{ data}} - v_{2, \text{ MC}}$ LEP2, √s = 183-209 GeV Archived ALEPH data ∛ 0.5 Preliminary CMS pp 13 TeV, v₂^{sub}{2} $N_{track} \ge 50$ CMS pp 7 TeV, v^{sub}₂{2} 0.4 Thrust axis CMS pp 5 TeV, v₂^{sub}{2} (overlap the data points taken 0.3 from the CMS paper (left)) 0.2 0.1 Data - Archived MC -0. MOD 2

ALEPH $e^+e^- \rightarrow hadrons$, s = 91GeV

Z-reson $a_{a}^{N_{a}} = 30, |\cos(\theta_{ab})| < 1.94$

- First 2PC analysis done in e^+e^- deg
- No hint of the azimuthal anisotropic correlations 0
- Good agreements btw data & Pythia6 MC 0

Summary

High-energy dataset (@ \/s > 180 GeV)

- Potential long-range near-side enhancement appears only on data but not MC
- Flow coefficient v₂ demonstrates a correspondence with LHC pp data
- On-going. Stay tuned!

Thank you very much!

Backup

High quality archived data

Jet 2 Jet 3 Jet 4

to animation)

ALEPH: EPJC 35 (2004) 456

Published results can be reproduced

Big thanks to ALEPH collaboration and MIT open data

LEP 2 data & MC processes

Year v.s. \sqrt{s} v.s. int. L

Year	Mean energy	Luminosity
	\sqrt{s} [GeV]	$[pb^{-1}]$
1995,1997	130.3	6
	136.3	6
	140.2	1
1996	161.3	12
	172.1	12
1997	182.7	60
1998	188.6	180
1999	191.6	30
	195.5	90
	199.5	90
	201.8	40
2000	204.8	80
	206.5	130
	208.0	8
Total	130 - 209	745

Hadronic $q\bar{q}$ production

Four fermion processes

Diverse decay channels above $\sqrt{s} = 180 \text{ GeV}$

LEP 2 event selections

Acceptance

Polar angle of sphericity axis: $7\pi/36 < \theta_{lab} < 29\pi/36$

Hadronic event selection

 \geq 5 tracks $E_{\rm chgd.} \ge 15 {\rm ~GeV}$

LEP 2 event selections

Acceptance Polar angle of sphericity axis: $7\pi/36 < \theta_{lab} < 29\pi/36$

Hadronic event selection \geq 5 tracks $E_{\rm chgd.} \ge 15 {\rm ~GeV}$

Two-particle correlations

ISMD 2023, Gyöngyös, Hungary

Track Selection:

- •
- |d0| < 2 cm
- |z0|< 10 cm
- $|\cos\theta| < 0.94$

Neutral Hadron Selection:

- Particle flow candidate 4, 5 (ECAL / HCAL object)
- E> 0.4 GeV
- $|\cos\theta| < 0.98$ ullet
- **Event Selection:**

 - Number of good ch+neu. particles >= 13 ullet
 - E_{charged} > 15 GeV
 - $|\cos(\theta_{\text{sphericity}})| < 0.82$

Selection

Particle flow candidate 0, 1, 2 (charged hadron / e^{\pm} / μ^{\pm}) Number of TPC hits for a charged tracks (N_{TPC}) >= 4, χ^2 /ndf < 1000

 $p_T > 0.2 \text{ GeV}$ (transverse momentum with respect to beam axis)

• Number of good charged particles >= 5 (including charged hadrons and leptons)

Analysis methods

Analysis methods

BUTTLE STATE BOILD BARDING STREET SEL SAL ROAMS TO BARDING STREET SEL SAL ROAMS TO BARDING STREET SEL SAL

Analysis methods

(accounting for baseline of random pairing) Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle) trigger particle $\frac{1}{N_{\rm trk}^{\rm corr}} \frac{d^2 N^{\rm pair}}{d\Delta \eta d\Delta \phi}$ $S(\Delta\eta, Z)$ $= B(0,0) \times$ $B(\Delta\eta, \Delta\phi)$ Beam axis (C.M. frame z axis)

Azimuthal differential associated yield $Y(\Delta \phi)$

Two-particle correlation function (per-trigger-particle associated yield)

 $\mathsf{Y}(\Delta \varphi)$

0.8

0.6

0

$d^2 N^{\text{pair}}$ $N_{\rm trig} \ d\Delta \eta d\Delta \phi$

- factor:

 $\varepsilon(p_{\rm T},\theta)$

• To calibrate the nonuniform detection efficiency and misconstruction bias

Reconstructed tracks are weighted by the inverse of the efficiency correction

$$\theta, \phi, N_{\text{trk}}^{\text{rec}}) = \left[\frac{d^3 N^{\text{reco}}}{dp_{\text{T}} d\theta d\phi} / \frac{d^3 N^{\text{gen}}}{dp_{\text{T}} d\theta d\phi}\right]_{N_{\text{trk}}^{\text{rec}}}$$

• A closure test is performed by comparing the p_T , θ , ϕ distributions of the generator level and those of the corrected reconstructed level

Corrections

- $Y(\Delta \phi)_{\text{gen},i_g}$ $C(\Delta \phi) =$ $\overline{Y}(\Delta \phi)_{\rm reco.}$

• To deal with remaining possible reconstruction effects

• Bin-by-bin correction: the correction factor is derived from the histogram ratio of MC correlation functions at the reconstruction and generator level as

• Final data correlation results are obtained from the multiplication of the original correlation function with the bin-by-bin correction factor

Perfect-fluid-like QGP expansion

2PC characterizes the medium expansion in the transverse region w.r.t. the reference axis:

Beam axis analysis:

hydrodynamic expansion of possible QGP medium in HI collisions

Hypothetical QGP in e^+e^- ?

2PC characterizes the medium expansion in the transverse region w.r.t. the reference axis:

Beam axis analysis: hydrodynamic expansion of possible QGP medium in HI collisions

Thrust axis analysis: soft emissions or QGP in e^+e^- annihilation

Anisotropic correlation around thrust axis in e^+e^- ?

$$T = \max_{\hat{n}} \frac{\sum_{i} \left| \overrightarrow{p_{i}} \cdot \widehat{n} \right|}{\sum_{i} \left| \overrightarrow{p_{i}} \right|}$$

If high energy quarks can form some medium, looking from the thrust axis is sensitive to the azimuthal anisotropy of this "imaginary medium."

(quark from e^+e^- annihilation)

//

e

LEP1

Long-range correlations (c.f. MC)

Beam axis

Thrust axis

2PC - comparisons with the low-energy Belle experiment $(<math>\sqrt{s}=10.52$ GeV)

ISMD 2023, Gyöngyös, Hungary

Results

Puzzles we faced along the way...

High-energy LEP 2 data

Enhanced signals?

Difficulties of the analysis:

- Larger initial-state radiation effects (radiative return to the Z)
 - Complicated physics processes above the di-boson production threshold (WW, ZZ)

Ongoing checks:

- Scanning of the long-range $|\Delta \eta|$ projection window with MC
 - To see if the signals really persist regardless the choice of the configuration
 - Consistency check: look into the year-dependence (collision-energy-dependence)
 - Compared with modern MC generators

Anti-k_T jet measurement

dσ

dE

e^+e^- system offers cleanest tests of QCD

- Unambiguous inputs to pQCD calculation & pheno. models (PYTHIA / HERWIG / SHERPA)
- Unlike pp & HI, jet energy spectrum at e^+e^- is peaked (not smeared by PDF, gluonic ISR, etc)

 \Rightarrow sensitive to tunes/params. in fragmentation calculation

Motivation

Anti-k_T jet measurement

Great opportunity for jet re-analysis @ LEP

Modern jet reco. & clustering algo. since the end of LEP

Jets are important building blocks! (e.g., BSM searches at LHC, probes of quark-gluon plasma at RHIC)

Anti-k_T clustering

$$R = 0.4 \quad \left(R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \right)$$

Acceptance cut: $0.2\pi < \theta_{iet} < 0.8\pi$

(avoid beam pipe)

Grooming & substructure

Soft drop algorithm

 R_G = opening angle

 z_G = energy sharing

min(

Ex: inclusive jet energy

Unfold to gen. level

Clustering

- Anti- k_T algorithm, R = 0.4 $\left(R = \sqrt{\Delta\eta^2 + \Delta\phi^2}\right)$
- Acceptance: 0 (avoid beam pipe) $0.2\pi < \theta_{\text{jet}} < 0.8\pi$

Clustering

Anti-k_T algorithm, R = 0.40

Grooming & substructure

JHEP 1405 (2014) 146 PRL 100 (2008) 242001

Clean up wide-angle soft energy

Clustering

Anti-k_T algorithm, R = 0.40

Grooming & substructure

- R_g = opening angle
- z_g = energy sharing
- M_g = invariant mass

JHEP 1405 (2014) 146 PRL 100 (2008) 242001

Soft drop/mMDT grooming

Recluster jet constituents with C/A algorithm

Sequentially open up jet until condition is met

$$z \equiv \frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{Cut}} \left(\frac{\theta}{R}\right)$$

 θ_{12} = opening angle btw sub-jet 1&2

 $(z_{\text{CUT}}, \beta) = (0.1, 0.0)$

ISMD 2023, Gyöngyös, Hungary

Clustering

Anti-k_T algorithm, R = 0.40

Grooming & substructure

- R_g = opening angle
- z_g = energy sharing

Calibration

MC-based calibration

Data/MC residual calibration

Monitoring on two variables:

- Forward-/ backward-side energy difference
- Multi jet mass

Clustering

Anti-k_T algorithm, R = 0.40

Grooming & substructure

- R_g = opening angle
- z_g = energy sharing

Calibration

Energy resolution: 10-25% (Angular resolution: 0.01-0.05)

0-5% difference in energy resolution between data and MC

Clustering

Anti-k_T algorithm, R = 0.40

Grooming & substructure

- R_g = opening angle
- z_g = energy sharing

Calibration

Unfolding to gen. level

Example: inclusive jet energy

Jet measurement observables

sensitive to the soft radiation

Inclusive jets Energy spectra Full jet mass Groomed jet angle Energy sharing Groomed jet mass

Soft drop grooming

sensitive to the hard part

Leading dijets Energy spectra Energy sum

Global leading dijet

We want to measure <u>global</u> leading dijet

But: out-of-acceptance jets appear lower in energy \rightarrow selection + correction

Rising edge sensitive to jet function

c.f. analytical calculation

NLL' [JHEP 07 (2021) 041]

LEP1

c.f. fragmentation models

Jet substructure observables — R_G

LEP1

Image: Weight of the second stateImage: Weight of the second stateImage (soft radiation & **combinatorial**)

higher R_G

Worse MC/data agreement

[JHEP 06 (2022) 008]

Jet substructure observables — Z_G

LEP1

Energy sharing (z_G)

Similar trend btw e⁺e⁻ & pp!

[JHEP 06 (2022) 008]

Measurement binned in energy (most not shown)

JHEP 06 (2022) 008

Energy sharing Z_G

