INVESTIGATION OF THE TWO-PARTICLE SOURCE FUNCTION AT $\sqrt{s_{NN}} = 2.76$ TEV WITH EPOS

BALÁZS KÓRODI^{1,2}, DÁNIEL KINCSES¹, MÁTÉ CSANÁD¹

¹Eötvös Loránd University, ²The Ohio State University

ISMD 2023, GYÖNGYÖS arXiv:2212.02980

Introduction

2 /11 FEMTOSCOPY – THE TWO-PARTICLE SOURCE

Analysis details

- Calculate the correlation function
- Test the assumptions on the measured correlation
- Event generator models (like EPOS) direct access to pair-source!

3 /11 LÉVY DISTRIBUTIONS IN HEAVY ION PHYSICS

- Measurements suggest phenomena beyond Gaussian distribution
- Lévy-stable distribution: $L(\mathbf{r}; \alpha, R) = (2\pi)^{-3} \int d^3 \mathbf{q} e^{i\mathbf{q}\mathbf{r}} e^{-\frac{1}{2}|\mathbf{q}R|^{\alpha}}$
 - α : Lévy stability index
 - Gaussan distribution: $\alpha = 2$
 - Cauchy distribution $\alpha = 1$
 - R: Lévy scale parameter
- Some possible causes:

Introduction

Analysis details

Results

• Event averaging (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)

mode

EPOS

- Resonance decays (Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002; Kincses, Stefaniak, Csanád, Entropy 24 (2022) 308)
- Hadronic rescattering, anomalous diffusion (Braz.J.Phys. 37 (2007) 1002; Entropy 24 (2022) 308)

4/11 THE EPOS MODEL

• EPOS = Energy conserving quantum mechanical multiple scattering approach, based on Partons (parton ladders), Off-shell remnants, and Saturation of parton ladders K.Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903

Analysis details

- Monte-Carlo based phenomenological model
- Stages of the evolution:
 - Initial stage parton based Gribov-Regge theory
 - Core-corona separation
 - 3+ID viscous hydrodynamic evolution
 - Hadronic rescattering UrQMD
- Dataset: EPOS3 2.76 TeV PbPb, 800k events

EPOS model

5/11 RECONSTRUCTING THE TWO-PARTICLE SOURCE

• Source spherically symmetric in the LCMS (PHENIX coll., Phys. Rev. Lett. 93 (2004), 152302)

•
$$\mathbf{r}_{LCMS} = \left(x_1 - x_2, y_1 - y_2, \frac{z_1 - z_2 - \beta(t_1 - t_2)}{\sqrt{1 - \beta^2}}\right), \beta = \frac{p_{z,1} + p_{z,2}}{E_1 + E_2}$$

- Calculate $D(r_{LCMS})$ event-by-event!
- Average transverse momentum (k_T) classes
- Investigated cases:
 - Pions:

Introductio

- CORE, primordial
- CORE, primordial+decay
- CORE+CORONA+UrQMD, primordial
- CORE+CORONA+UrQMD, primordial+decay
- Kaons: CORE+CORONA+UrQMD, primordial+decay
- Protons: CORE+CORONA+UrQMD, primordial+decay

Analysis details

6/11 LÉVY FITS TO THE TWO-PARTICLE SOURCE

- Event-by-event Lévy fits
- Without decays and UrQMD → close to Gaussian
- After decays or UrQMD → far from Gaussian
- Lévy shape appears in single events!
- Similar fits for kaons and protons
- Only keep fits with CL > 0.1%

Introductio

EPOS3 single event

Results

Analysis details

7/11 DISTRIBUTION OF THE SOURCE PARAMETERS

- Collect all fit results in R vs α histograms
- Similar figures for each centrality, k_T and for kaons or protons
- Extract average values $\langle R \rangle$ and $\langle \alpha \rangle$
- Extract standard deviations
- Investigate centrality and k_T dependence

Introductio

Analysis details

8/11 PION SOURCE PARAMETERS

- Lévy scale parameter (R):
 - Larger in central collisions \rightarrow spatial scale
 - Decreases with $m_T \rightarrow$ hydrodynamic scaling
 - Small effect of decay products
- Lévy stability index (α):

Introductio

- Weak centrality dependence
- Small decrease with m_T
- Smaller after decays → source shape influenced
- Similar trends to experimental results
- Magnitudes of the parameters different

9/11 PION, KAON, PROTON LÉVY SCALE PARAMETER

Similar trends

ntroductio

- Hydrodynamics + Gaussian source \rightarrow $\frac{1}{R^2} \sim m_T$ particle independent scaling
- EPOS $\rightarrow R$ depends on the particle type
- No universal m_T scaling in EPOS
- For given species scaling is fulfilled
- Stat. uncertainties smaller than markers

nalv

10/11 PION, KAON, PROTON LÉVY STABILITY INDEX

- Source deviation from Gaussian ($\alpha = 2$)
- In case of anomalous diffusion:
 - Smaller cross-section \rightarrow larger mean free path \rightarrow longer power-law tail \rightarrow smaller α
- Prediction: $\alpha_K < \alpha_\pi < \alpha_p$
- Only partially fulfilled!

Introductio

 Anomalous diffusion cannot be the only reason for the Lévy shape

EPOS3 CORE+CORONA+UrQMD

Analysis

II/II SUMMARY

- Analysis steps:
 - Event-by-event reconstruction of the two-particle source in EPOS 2.76 TeV PbPb
 - Single event Lévy fits event-by-event Lévy shape
 - Extract mean Lévy parameters $\langle R \rangle$ and $\langle \alpha \rangle$

• Results:

- Hydrodynamic and geometric scaling of $\langle R \rangle$
- $\langle \alpha \rangle$ affected by decays
- Similar trends to experiment, but different magnitudes
- Particle species dependent $\langle R \rangle$
- Partially fulfilled predictions of anomalous diffusion
- Preprint: arXiv:2212.02980 (submitted to PLB)

Supported by the NKFIH OTKA grants K-133046, K-128713, and K-138136. Supported by the ÚNKP-22-2 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

Introduction

14 KAON AND PROTON EXAMPLE FIT

EPOS3 single event

Analysis details

15 CONTOURS OF THE R VS α DISTRIBUTIONS

- 1σ contours for all k_T classes
 - Ellipses from σ_{α} , σ_R and $cor_{\alpha,R}$
 - Only 2 centralities in one figure for clarity
- αR anti-correlation

Introductio

• Illustrates centrality and k_T dependence

Analysis details

16 COMPARISON TO DATA AND LOWER ENERGY EPOS

Kincses, Stefaniak, Csanád, Entropy 24 (2022) 308

- Similar centrality and m_T dependence
- $\langle R \rangle$ (2.76 TeV EPOS) > $\langle R \rangle$ (200 GeV EPOS)

Afai

• $\langle R \rangle$ (2.76 TeV EPOS) > R(5.02 TeV data) ?

nalysis

17 COMPARISON TO DATA AND LOWER ENERGY EPOS

- Similar centrality and m_T dependence
- $\langle \alpha \rangle$ (2.76 TeV EPOS) < $\langle \alpha \rangle$ (200 GeV EPOS)
- $\langle \alpha \rangle$ (2.76 TeV EPOS) < α (5.02 TeV data)

nalvsi

18 LÉVY SCALE PARAMETER VS N_{part}

- *N_{part}* : average number of participating nucleons
- $N_{part}^{1/3}$ ~ one-dimensional initial size
- Approximately linear scaling → geometric interpretation
- Super small statistical uncertainties:

 $\frac{\sigma_R}{\sqrt{N_{evts}}} \approx 0.01\%$

ntroductio

EPOS3 CORE+CORONA+UrQMD

Analysis details

19 INTERESTING SPECIES INDEPENDENT SCALING OF R

- $R \text{ vs. } m_T m \rightarrow \text{same curve for pions}$ and kaons
- Divide R with one plus the number of valence quarks → same curve for protons
- Unknown reasons and interpretation

EPOS3 CORE+CORONA+UrQMD

defa

nalysis

