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Introduction

« Among the results from relativistic heavy-ion collisions, two of the most studied are
the jet energy loss and the fluid behavior of the system formed after the collision.

e Both results are well established, but considerable uncertainty exists about the fate
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e To find answers, we linked the jet qguenching phenomenon with hydrodynamic theory
and hadron's polarization.

Vorticity-Spin Coupling

e Recently it was observed that the polarization of A hyperons presents a

preference to be oriented according to the global vorticity of the system [2].
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Figure 2: Energy dependence of A and A global
polarization at midrapidity from midcentral Au+Au

(20-50%) or Pb+Pb (15-50%) collisions. Comparison
of experimental data to different models [3].
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 We showed that the deposition of energy-momentum of a quenched jet into the
medium generates flow gradiants that give rise to an structure that we call

Figura 4: Vortex
ring formed by a
thermalized jet into
a hydrodynamic
evolution. The
color gradiants
show |&J| and the
arrows shows the y
and z component
of the vorticity
vector.

e Due to the vorticity of the ring, this phenomenon can be measured
experimentally using the polarization of the A hyperons, which will align

according to that vorticity.

e We also propose an experimental
observable responsible for filtering the
contributions of polarization that was
Induced by the thermalization of the jet.

composed of three main stages:

« Pb-Pb @ 2.76 TeV;

e Smooth and
Fluctuating Initial
Conditions.

The Ring Observable:

Based on: V. H. Ribeiro et al, arXiv:2305.02428 [hep-ph]
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Methodology

To obtain the results of this work, we applied a hybrid chain computer simulation
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Results and Conclusions

In this work, we studied the sensitivity of the polarization induced by the thermalized jet
to different parameters. The results are shown in the plots below.
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Figura 6: The ring observable as a function of the  gifferent scenarios of insertion position.
shear viscosity (left) and jet's velocity (right).

o The signal calculated through the Ring Observable is sensitive to: shear viscosity
of the medium; momentum of the quenched jet; position and direction of the
energy-momentum currents.
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Figura 8:The ring observable as a function of the
impact paramenter for different scenarios of analysis.

 The Ring Observable is a poweful tool to probe jet-medium interactions
and QGP dynamics.

e The signal of the observable is robust with respect to different
scenarios.
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