Introduction to the

Dispersive HVP Discussion Session

Implications of the existing tensions among the experimental $e^+e^- \rightarrow \pi^+\pi^$ measurements for the dispersive combinations (DHMZ)

Bogdan MALAESCU

6th Plenary Workshop of the Muon g-2 Theory Initiative University of Bern

05/09/2023

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data

B. Malaescu (CNRS)

Intro Dispersive HVP Discussion

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: weights and tension

 \rightarrow The newly added data have important contributions (weights) in the combination

→ Enhanced tensions, especially between KLOE & CMD3, which provide the smallest / largest cross-sections in the ρ region: yet another indication of underestimated uncertainties → Calls for conservative uncertainty treatment in combination fit (fits / evaluation of weights) → Systematic effects beyond the local χ^2 /ndof rescaling: had already motivated the inclusion of the dominant BABAR-KLOE systematic by DHMZ since 2019, but tensions are larger now

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: relative differences

B. Malaescu (CNRS)

Intro Dispersive HVP Discussion

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: relative differences

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data, *exercise* without KLOE

→ Motivated by recent NNLO measurement by BaBar and the findings about the description of extra radiation in Phokhara (see talks by M. Davier and Z. Zhang)

 \rightarrow Probe the hypothesis of a possible impact of "N(N)LO" photons for KLOE, through the use of Phokhara (pending extra studies by KLOE): investigate a possible combination without KLOE

 \rightarrow Preserved hierarchy of weights for remaining experiments

 \rightarrow Significantly reduced tension in the region ~0.80 - 0.97 GeV

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data, *exercise* without KLOE

Quantitative comparisons for a HVP

All experiments: a_{μ} [0.3 ; 1.8 GeV] = 510.9 ±2.5 (±0.8 (stat) ±2.3 (syst)) Without applying the χ^2 /ndof rescaling of uncertainties: a_{μ} [0.3 ; 1.8 GeV] = 510.9 ±1.7 (±0.6 (stat) ±1.6 (syst))

All experiments: a_{μ} [0.5251 ; 0.8832 GeV] = 410.9 ±2.0 (±0.7 (stat) ±1.8 (syst)) Without applying the χ^2 /ndof rescaling of uncertainties: a_{μ} [0.5251 ; 0.8832 GeV] = 410.9 ±1.3 (±0.5 (stat) ±1.2 (syst)) *Exercise* without KLOE:

 a_{μ} [0.3 ; 1.8 GeV] = 513.9 ±2.6 (±1.0 (stat) ±2.5 (syst))

Without applying the χ^2 /ndof rescaling of uncertainties: a_µ [0.3 ; 1.8 GeV] = 513.9 ±2.0 (±0.7 (stat) ±1.8 (syst))

Exercise without KLOE: a_{μ} [0.5251 ; 0.8832 GeV] = 413.6 ±2.1 (±0.9 (stat) ±1.9 (syst)) Without applying the χ^2 /ndof rescaling of uncertainties: a_{μ} [0.5251 ; 0.8832 GeV] = 413.6 ±1.5 (±0.6 (stat) ± 1.4(syst))

- \rightarrow Including/removing KLOE induces shift of ~3 units for the total integral
- → Precision gain in presence of extra data largely compensated by the local χ^2 /ndof rescaling; In addition, an extra (dominant) uncertainty accounting for systematic deviations between measurements has to be added

x 10⁻¹⁰

Quantitative comparisons for a HVP

→ Comparison of integrals computed on restricted energy ranges, for individual experiments: significance of the difference between different experiments, taking into account correlations

$$\label{eq:a_place} \begin{split} \Delta a_{\mu} [\ 0.32698 \ ; \ 1.19917 \ GeV \] : \\ BABAR - CMD3: \ -11.9 \pm 5.6 \ ; \ Significance: \ 2.1 \ \sigma \end{split}$$

 $\begin{array}{l} \Delta a_{\mu} [\ 0.5251 \ ; \ 0.8832 \ GeV \] : \\ SND - KLOE10: \ 4.3 \pm 6.7 \ Significance: \ 0.6 \ \sigma \\ SND20 - KLOE10: \ 7.8 \pm 5.4 \ Significance: \ 1.4 \ \sigma \\ SND20 - SND: \ 3.4 \pm 6.3 \ Significance: \ 0.5 \ \sigma \\ CMD3 - KLOE10: \ 22.7 \pm 5.2 \ Significance: \ 4.4 \ \sigma \\ CMD3 - SND2: \ 18.4 \pm 6.3 \ Significance: \ 2.9 \ \sigma \\ CMD3 - SND20: \ 15.0 \pm 4.9 \ Significance: \ 3.1 \ \sigma \\ BABAR - KLOE10: \ 12.1 \pm 5.0 \ Significance: \ 1.3 \ \sigma \\ BABAR - SND20: \ 4.4 \pm 4.7 \ Significance: \ 0.9 \ \sigma \\ BABAR - CMD3: \ -10.6 \pm 4.5 \ Significance: \ 2.4 \ \sigma \\ \end{array}$

 \rightarrow Largest tensions between CMD3 and KLOE

 \rightarrow Important to clarify tension between CMD3 and CMD2

Δa_{μ} [0.7 ; 0.8 GeV] :

SND20 - CMD2-2004: -0.7 \pm 2.5 Significance: 0.3 σ SND20 - CMD2-2006: 1.2 ± 2.4 Significance: 0.5σ SND20 - KLOE08: 4.0 ± 2.4 Significance: 1.7σ SND20 - KLOE10: 4.9 ± 2.4 Significance: 2.1σ SND20 - KLOE12: 4.8 ± 2.4 Significance: 2.0 σ SND20 - SND: 1.5 ± 3.2 Significance: 0.5σ CMD3 - CMD2-2004: 5.7 ± 2.6 Significance: 2.2σ CMD3 - CMD2-2006: 7.6 \pm 2.6 Significance: 3.0 σ CMD3 - KLOE08: 10.4 ± 2.3 Significance: 4.4 σ CMD3 - KLOE10: 11.2 ± 2.3 Significance: 4.9 σ CMD3 - KLOE12: 11.1 \pm 2.3 Significance: 4.8 σ CMD3 - BES2pi: 8.6 ± 2.7 Significance: 3.2σ CMD3 - SND: 7.8 ± 3.2 Significance: 2.5σ CMD3 - SND20: 6.3 ± 2.4 Significance: 2.7 σ BABAR - CMD3: -5.6 ± 2.3 Significance: 2.5 σ BABAR - SND20: 0.7 ± 2.3 Significance: 0.3σ BABAR - KLOE08: 4.7 ± 2.3 Significance: 2.1 σ BABAR - KLOE10: 5.6 ± 2.3 Significance: 2.5σ BABAR - KLOE12: 5.5 ± 2.3 Significance: 2.4 σ

Comparison of / consequences for combination methods

Analysis aspect	DHMZ	KNT
Blinding	Not necessary (No ad-hoc choices to make)	Included for upcoming update
Binning	 Fine (≤ 1 MeV) final binning for average and integrals. Large (O(100 MeV) or less) common binning @ intermediate step: compare statistics of experiments coherently for deriving weights in fine bins. 	Re-bin data into "clusters". Scans over cluster configurations for optimisation.
Closure test	Using model for spectrum: negligible bias. (since 2010)	Not performed
Additional constraints	Analyticity constraints for 2π channel.	None
Fitting	χ^2 minimisation with correlated uncertainties incorporated locally (in fine & large bins), for deriving weights. Full propagation of uncertainties & correlations.	χ^2 minimisation with correlated uncertainties incorporated globally.
Integration / interpolation	Av. of quadratic splines (3 rd order polynomial), integral preservation in bins of measurements. Analyticity-based function for 2π (< 0.6 GeV).	Trapezoidal for continuum, quintic for resonances.
Uncertainty inflation	Local χ^2 uncertainty inflation. (since 2009) Extra BABAR-KLOE systematic. (since 2019)	Local χ^2 uncertainty inflation. (adopted since 2017)
Inter-channel correlations	Taken into account. (since 2010)	Not included.
Missing channels	Estimated based on isospin symmetry. (since 1997 - ADH)	Adopted in subsequent updates
→ Large DHMZ/KNT differences for the resulting uncertainties, as well as for the shapes of the combined spectra (backup)		WP TI DHMZ19 KNT19 $a_{\mu}^{\text{HVP, LO}} \times 10^{10}$ 694.0(4.0) 692.8(2.4)

as well as for the shapes of the combined spectra (backup)

 \rightarrow CHS approach for 2π and 3π : Analyticity and global χ^2 fit (See talk by Peter Stoffer)

B. Malaescu (CNRS)

Points for discussion

- \rightarrow Questions on the combination results/exercise above ?
- (\rightarrow Discussions / checks / open points for CMD3 discussed yesterday)
- \rightarrow Extra ISR/FSR photons in data & simulation: impact in the context of the observed tensions
- \rightarrow Enhanced evidence for uncertainties on uncertainties

 $\rightarrow \dots$

Backup

Combine cross section data: goal and requirements

- \rightarrow Goal: combine experimental spectra with arbitrary point spacing / binning
- \rightarrow Requirements:
- Properly propagate uncertainties and correlations
- *Between measurements (data points/bins) of a given experiment* (covariance matrices and/or detailed split of uncertainties in sub-components)
- *Between experiments* (common systematic uncertainties, e.g. VP) based on detailed information provided in publications
- *Between different channels* motivated by understanding of the meaning of systematic uncertainties and identifying the common ones

BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling);

BABAR radiative corrections; $4\pi 2\pi^0 - \eta \omega$

CMD2 $\eta\gamma - \pi^0\gamma$; CMD2/3 luminosity; SND luminosity;

FSR; hadronic VP (old experiments)

(1st motivation for using DHMZ uncertainties as "baseline" in the g-2 TI White Paper)

- Minimize biases
- Optimize g-2 integral uncertainty

(without overestimating the precision with which the uncertainties of the measurements are known)

Combination procedure implemented in HVPTools software

- \rightarrow Define a (fine) final binning (to be filled and used for integrals etc.)
- \rightarrow Linear/quadratic splines to interpolate between the points/bins of each experiment
 - for binned measurements: preserve integral inside each bin
 - closure test: replace nominal values of data points by Gounaris-Sakurai model and re-do the combination \rightarrow (non-)negligible bias for (linear)quadratic interpolation
- → Fluctuate data points taking into account correlations & re-do the splines for each (pseudo-)experiment
 - each uncertainty fluctuated coherently for all the points/bins that it impacts
 - eigenvector decomposition for (statistical) covariance matrices

Combination procedure implemented in HVPTools software

For each final bin:

- \rightarrow Compute an average value for each measurement and its uncertainty
- \rightarrow Compute correlation matrix between experiments
- \rightarrow Minimize χ^2 and get average coefficients (weights)
- \rightarrow Compute average between experiments and its uncertainty

Evaluation of integrals and propagation of uncertainties:

- → Integral(s) evaluated for nominal result and for each set of toy pseudo-experiments; uncertainty of integrals from RMS of results for all toys
- → The pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections → Integral evaluation
- \rightarrow Uncertainties also propagated through $\pm 1\sigma$ shifts of each uncertainty:
 - allows to account for correlations between different channels (for integrals and spectra)
- \rightarrow Checked consistency between the different approaches

Combination procedure: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

Note: average weights must account for bin sizes / point spacing of measurements

(do not over-estimate the weight of experiments with large bins)

 \rightarrow weights in fine bins evaluated using a common (large) binning for measurements + interpolation

 \rightarrow compare the precisions on the same footing

 \rightarrow Bins used by KLOE larger than the ones by BABAR in ρ - ω interference region (factor ~3)

→ Average dominated by BaBar, CMD3 KLOE, SND20 BaBar covering full range

Combination procedure: compatibility between measurements

For each final bin:

 $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, *taking into account the correlations*

 \rightarrow Scale uncertainties in bins with χ^2 /ndof > 1 (PDG): *locally* conservative; Adopted by KNT since '17

→ Tension between measurements: *indication of underestimated uncertainties* Motivates conservative uncertainty treatment in combination fit (evaluation of weights)

 \rightarrow Observed (systematic) tension between measurements

 \rightarrow (Since 2019) Included extra (dominant) uncertainty: 1/2 difference between integrals w/o either BABAR or KLOE (2^{nd} motivation for using DHMZ uncertainties as "baseline" in the TI WP) Extra uncertainty starts to be adopted in other studies (2205.12963)

Combining the 3 KLOE measurements

Local combination (DHMZ)

Information propagated between mass regions, through shifts of systematics - relying on correlations, amplitudes and shapes of systematics (KLOE-KT)