

LEVERHULME TRUST_{____}

Status of the MUonE experiment

Riccardo Nunzio Pilato, University of Liverpool on behalf of the MUonE Collaboration

r.pilato@liverpool.ac.uk

6 th Plenary Workshop of the Muon g-2 Theory Initiative September 8th 2023

aµ **HLO : space-like approach**

electromagnetic coupling constant.

MUonE: a new independent evaluation of $a_{_\mu}^{}$ HLO

$a_{\mu}^{HLO} = \frac{\alpha_0}{\pi} \int d\mathbf{x} (1 - \mathbf{x}) \Delta \alpha_{had}[t(\mathbf{x})]$	
Lautrup, Peterman, De Rafael, Phys. Rep. C3 (1972), 193	
$t(\mathbf{x}) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$	t
Based on the measurement of $\Delta \alpha_{had}(t)$:	
hadronic contribution to the running of the	

2 [Carloni Calame, Passera, Trentadue, Venanzoni,](https://www.sciencedirect.com/science/article/pii/S0370269315003573?via%3Dihub)

 [Phys. Lett. B 746 \(2015\), 325](https://www.sciencedirect.com/science/article/pii/S0370269315003573?via%3Dihub)

Extraction of $\Delta \alpha_{\text{had}}(t)$ from the *shape* of the $\mu e \rightarrow \mu e$ differential cross section

- Compute $a_{\mu}^{\ \rm HLO}$ using data from one single experiment.
- Correlation between muon and electron angles allows to select elastic events and reject background (*μ* N → *μ* N *e +e -*).
- Boosted kinematics: θ_μ < 5 mrad, θ_e < 32 mrad.

The experimental apparatus

Achievable accuracy

40 stations $\frac{40 \text{ s}}{20 \text{ cm}}$ Be) $+$ 3 years of data taking $=$ $(-4x10^{12}$ events $E_e > 1$ GeV)

~0.3% statistical accuracy on a_μ^{\parallel} HLO

Competitive with the latest theoretical predictions.

Main challenge: keep systematic accuracy at the same level of the statistical one

Systematic uncertainty of 10 ppm in the signal region. Main systematic effects:

- Longitudinal alignment $(-10 \mu m)$
- Knowledge of the beam energy (few MeV)
- Multiple scattering
- Angular intrinsic resolution
- Non-uniform detector response

Sensitivity to $\Delta\alpha_{\rm had}({\bf t})$

6

$\Delta\alpha_{\text{had}}$ parameterization

7

Inspired from the 1 loop QED contribution of lepton pairs and top quark at *t* < 0

$$
\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3} \frac{M}{t} + \left(\frac{4}{3} \frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}
$$
 2 parameters:

Allows to calculate the full value of a_μ^{\parallel} HLO

Dominant behaviour in the MUonE kinematic region:

$$
\Delta \alpha_{had}(t) \simeq -\frac{1}{15}Kt
$$

Calculation of a_μ^{HLO}

Extraction of $\Delta\alpha_{\hbox{\tiny had}}(t)$ through a template fit to the 2D ($\theta_{\hbox{\tiny e}},$ $\theta_{\hbox{\tiny \mu}}$) distribution

Simulation @ final luminosity: 1.5x10⁴ pb⁻¹

4×10 ¹² elastic events with $\mathsf{E}_{_{\mathrm{e}}}$ > 1 GeV ($\Theta_{_{\mathrm{e}}}$ < 32 mrad)

 $a_{\mu}^{\text{HLO}} = (688.8 \pm 2.4) \times 10^{-10}$ (0.35% stat error)

> Input value: $a_{\mu}^{\text{HLO}} = 688.6 \times 10^{-10}$

Main systematics have large effects in the normalization region. (no sensitivity to $\Delta\alpha_{\text{had}}$ here)

Promising strategy:

- Study the main systematics in the normalization region.
- Include residual systematics as nuisance parameters in a combined fit with signal.

Location: M2 beamline at CERN

- Location: upstream the COMPASS detector (CERN North Area).
- Low divergence muon beam: $\sigma_{y} \sim \sigma_{y} \sim 0.2$ mrad.
- Spill duration \sim 5 s. Duty cycle \sim 25%.
- Maximum rate: 50 MHz (\sim 2-3x10⁸ μ ⁺/spill).

 -200

10

 X (mm)

Tracker: CMS 2S modules

Silicon strip sensors currently in production for the CMS-Phase2 upgrade.

Two close-by strip sensors reading the same coordinate:

- Suppress background of single sensor hits.
- Reject large angle tracks.
- \cdot Pitch: 90 μ m
- **Digital readout**
- Readout rate: 40 MHz
- Area: 10×10 cm² (~90 cm² active)
- Thickness: $2 \times 320 \mu m$

Frontend control and readout via [Serenity](https://serenity.web.cern.ch/serenity/) board (to be used in the CMS-Phase2 upgrade).

- Asynchronous beam: triggerless readout of the 2S modules @40MHz.
- Event aggregator on FPGA.
- Further data aggregation on the PC.
- Transmission to EOS into ~1GB files.

Tracking station

14

Beam Test 2021

Parasitic beam test at M2 beam line, 3 weeks in October/November 2021

- Joint test with CMS Tracker.
- Apparatus located downstream of NA64.
- \cdot 160 GeV muons, \sim 16 kHz rate.

Four 2S modules tested in beam:

- 2 modules built for MUonE in the MUonE station.
- 2 modules built for CMS Tracker in the CMS box.

Beam Test 2021

First demonstration of the full DAQ chain with an asynchronous beam

- Reliable readout over >6h runs.
- 30 TB of raw data collected to disk, ~1 TB after empty packets removal (low beam rate).
- Offline analysis: check data integrity, beam behaviour, simple 2S modules synchronization and correlations.

16

Calorimeter

- 5x5 PbWO_{4} crystals: area: 2.85×2.85 cm², length: 22cm (~25 X_{o}).
- Total area: \sim 14 \times 14 cm².
- Readout: APD sensors.

Dedicated beam tests:

- July 2022: 1-4 GeV. Overall detector & DAQ debug. Absolute energy calibration.
- 31/05–10/06 2023: 20–150 GeV *e -* .
- 21-26/06 2023: 1-10 GeV *e -* .
- Energy resolution studies ongoing.

Beam Test 2022

One week as main users in October

- Joint test with CMS Tracker.
- Apparatus in the final location of MUonE on the beamline.
- 1 fully equipped tracking station (6 modules)+ ECAL.
- Scale up DAQ system.
- High intensity 160 GeV muon beam + 40 GeV electrons (low intensity).

Beam Test 2022

- A more extensive DQM framework: many 2021 analyses incorporated as detector monitoring.
- Achieved tracker synchronization < 0.5 ns (exploiting fine delays in the 2S modules electronics).

• First track fitting.

A 3 weeks Test Run with a reduced detector has been approved by SPSC, to validate our proposal.

Main goals:

- Confirm the system engineering.
- Monitor mechanical and thermal stability.
- Test the detector performance.
- Test the reconstruction algorithms.
- Study the background processes and the sources of systematic error.
- Demonstration measurement: $\Delta \alpha_{\text{len}}(t)$ with a few % precision.

Installing the detector...

Installing the detector...

Ready for data taking!

The first elastic events @ 40 MHz

Conclusions and future plans

- \cdot Intense Beam Test activities in 2021-2022: first experience with detector in real beam conditions.
- \cdot 3 weeks Test Run in 2023: proof of concept of the experimental proposal using 2 tracking stations (pretracker + 1 station with target) and ECAL.
- Technical proposal in 2024 based on the results of the Test Run.
- Towards the full experiment: 5-10 stations before LS3 (2026). 2-4 months data taking: first measurement (few % precision) of $\,a_{\mu}^{\,\,\rm HLO}.$ HLO
- Full apparatus (40 stations) after LS3 to achieve the target precision (~0.3% stat and similar syst).

The MUonE Collaboration gratefully acknowledges the contributions of the CMS Collaboration.

New collaborators are welcome!

+ other involved theorists from: New York City Tech (USA), Vienna U. (A)

BACKUP

• 160 GeV muon beam on atomic electrons.

 $\sqrt{s} \sim 420 \,\text{MeV}$

$$
-0.153\,{\rm GeV}^2 < t < 0\,{\rm GeV}^2
$$

 $\Delta \alpha_{had}(t) \lesssim 10^{-3}$

From time-like to space-like

Laser holographic system

Initial state

- Compare holographic images of the same object at different times.
- Fringe pattern is related to deformations of the mechanical structure.
- Developed at INFN Trieste, tested in 2022 at CERN.

Template fit

1. Define a grid of points (K, M) in the parameters space, in order to cover a region
 $±5σ$ around the expected values
(σ = expected uncertainty). Step size: σ/4 or σ/2.

2. Generate a MC sample and apply a reweighting procedure to make an ensemble of template distributions. Each template distribution corresponds to a (K, M) point in the grid.

Template fit

- 3. Make a χ ² (or likelihood) comparison between the data and each template distribution.
- 4. Perform a parabolic interpolation across the grid points to get the best fit parameters (K, M).

Test Run 2023: extraction of $\Delta\alpha_{\rm lep}(\textbf{t})$

Not enough for $\Delta \alpha_{\text{had}}(t)$,

Expected ~10 12 μ on target, ~2.5×10 8 elastic events E $_{\rm e}$ > 1 GeV (Expected luminosity: ~ 1 pb⁻¹)

 10^{-2} $\Delta \alpha_{i}$ $\Delta \alpha_{\text{len}}(t) \sim 10^{-2}$ 10^{-3} $=$ had $i = lep$ 10^{-4} $\Delta\alpha_{\rm had}^{\rm (t)}$ < 10⁻³ 10^{-5} 5 20 10 15 θ_e [mrad]

but we can measure $\Delta \alpha_{\text{len}}(t)$ 1 loop QED contribution of lepton pairs:

$$
\Delta \alpha_{lep}(t) = k \left[f(m_e) + f(m_\mu) + f(m_\tau) \right]
$$

$$
f(m) = -\frac{5}{9} - \frac{4m^2}{3t} + \left(\frac{4m^4}{3t^2} + \frac{m^2}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4m^2}{t}}} \ln \left| \frac{1 - \sqrt{1 - \frac{4m^2}{t}}}{1 + \sqrt{1 - \frac{4m^2}{t}}} \right|
$$

1 parameter template fit: Fix lepton masses and fit k

$$
k=\frac{\alpha}{\pi}
$$

Expected precision: ~5%

Template fit without PID Stability for different angular cuts

Sensitivity 2025

events with $E_e > 1$ GeV (θ_e < 32 mrad)

We will be sensitive to the leptonic running $(\Delta \alpha_{\text{len}}(t) < 10^{-2})$

Low sensitivity to the hadronic running $(\Delta \alpha_{\text{had}}(t) < 10^{-3})$

$$
\Delta \alpha_{had}(t) \simeq -\frac{1}{15}Kt
$$

 $K = 0.136 \pm 0.026$ (20% stat error)

Systematic error on the multiple scattering model

Expected precision on the gaussian core: ± 1% [G. Abbiendi et al JINST \(2020\) 15 P01017](https://iopscience.iop.org/article/10.1088/1748-0221/15/01/P01017) PDG modelization:

$$
\sigma_{MS} \propto \sqrt{\frac{x}{X_0}}
$$
 x = target
thickness

Systematic error on the detector angular resolution

38 27

2S modules resolution: 8-11μm

±10% error on the detector angular resolution.

Systematic error on the muon beam energy

Accelerator division provides E_{beam} with O(1%) precision (~ 1 GeV).

This effect can be seen from our data in 1h of data taking per station.

Promising strategy:

- Study the main systematics in the normalization region.
- Include residual systematics as nuisance parameters in a combined fit with signal.
- MESMER MC for the template fit + Combine tool to fit the nuisance parameters.

- $K_{ref} = 0.137$ \cdot shift intr. res: $+5\%$
- \cdot shift MS: $+0.5\%$ • shift E_{beam} : +6 MeV

Next steps:

- Test the procedure for the MuonE design statistics.
- Improve the modelization of systematic effects.

Backgrounds

MESMER GEANT4 $\bullet \ \mu N \rightarrow \mu N \gamma$ $\bullet \mu e^- \rightarrow \mu e^- \gamma$

$$
\bullet \ \mu e^- \rightarrow \mu e^- e^+ e^- \qquad \bullet \ \mu N \rightarrow \mu N e^+ e^-
$$

Soon complete $\bullet \ \mu N \rightarrow \mu X$ implementation in MESMER

41

BE-DAQ architecture

Single Serenity communicates with frontends in the Test Run

- Expected event size: 1 Kb (Tk)
- Output data split across 4 servers via 10 Gbps Ethernet (UDP)
- Empty frames from beam gap forwarded in addition to in-spill data

Reduced data rate from servers

- Book-keep empty frames but do not forward to switch
- From switch to EOS/CTA with 20 Gbps

- \bullet Test Run: read all data with no event selection.
- \cdot Information will be used to determine online selection algorithms to be used in the Full Run.

Tracker: CMS 2S modules

[CMS Tracker Phase2](https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf) [Upgrade - TDR](https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf)

Two sensors reading the same coordinate:

- Background suppression from single-sensor hits.
	- Rejection of large angle tracks.

Stub information: position of the cluster in the seed layer + distance between position of correlation cluster and seed cluster (bend)

MUonE simulations: Improving resolution - tilted geometry

- Improvement mainly due to charge sharing between adjacent strips
- Tune the tilt angle and the digitization threshold to equalize the number of hits composed of 1 or 2 strips.

Final resolution $22 \mu m \rightarrow -10 \mu m$ 1) charge sharing: energy deposition of particles in the Si is shared among neightbouring strips

2) effective staggering: tilting a 2S module by 25 mrad is equivalent to stagger the two sensors by ½pitch

MUonE simulations: Improving resolution - tilted geometry

GEANT4 simulations

Effect of energy selection using the calorimeter

Multiple scattering: results from TB2017

Multiple scattering effects of electrons with 12 and 20 GeV on Carbon targets (8 and 20 mm)

Main goals:

- \cdot to determine a parameterization able to describe also non Gaussian tails
- to compare data with a GEANT4 simulation of the apparatus

Multiple scattering: results from TB2017

$$
f_e(\delta \theta_e^x) = N \left[(1-a) \frac{1}{\sqrt{2\pi}\sigma_G} e^{-\frac{(\delta \theta_e^x - \mu)^2}{2\sigma_G^2}} + a \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu \pi}\sigma_T \Gamma(\frac{\nu}{2})} \left(1 + \frac{(\delta \theta_e^x - \mu)^2}{\nu \sigma_T^2} \right)^{-\frac{\nu+1}{2}} \right]
$$

Test Beam 2018

