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Reminders

» Modern cosmology based on the cosmological principle: the universe admits a
maximally symmetric (FLRW) spacetime

v Homogeneous: all regions of space look alike, no preferred positions
v Isotropic: no preferred directions
» Recent cosmological observations have shown that the universe is undergoing a
recent epoch of accelerated expansion

» Whereas it is not conclusively known what caused this recent cosmic acceleration,

the prevailing argument is that dark energy caused it

» Among the most widely considered candidates of dark energy is the vacuum
energy of the cosmological constant A

» Some serious problems associated with the cosmological constant, among them
the eponymous cosmological constant problem * and the coincidence problem 2
» Several alternatives proposed, such as:

v Inhomogeneous and/or anisotropic models
v’ Interacting dark fluids (dark matter and dark energy)
v Modifications to gravity

1Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61 (1), 1
2Velten, H. E. et al. Aspects of the cosmological “coincidence problem". Eur. Phys. J. C 2014, 74 (11), 1
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Why Gravity?

» Four fundamental forces in nature; why care only about gravity?

Fundamental Forces
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The fundamental forces of nature. [Credit: Socratic.org]
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https://socratic.org/questions/what-are-the-four-fundamental-forces-of-astronomy

What exactly is gravity?

Eingtein's gravity ag curvature of epacetime:
matter tells gpacetime how to curve, gpacetime
tells matter how to move

Newton's force-at-a dictance
degeription
deceriptio

Gravitation a la Newton and Einstein
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The geometrical “trinity" of gravity
» Three different geometrical representations of spacetime curvature possible

RLY‘S v
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The rotation of a vector transported along a closed
curve is given by the curvature: General Relativity.
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The non-closure of parallelograms formed when two The variation of the length of a vector as it is

vectors are transported along each other is given by the  transported is given by the non-metricity:

torsion: Teleparallel Equivalent of General Relativity. Symmetric Teleparallel Equivalent of General Relativity.

The geometrical meaning of curvature, torsion and non-metricity. [Credit: Jimenez et al, arXiv 1903.06830]
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The geometrical “trinity" of gravity...
» Three possible gravitational interpretations

Three alternative gravitational descriptions. [Credit: Jimenez et al, arXiv 1903.06830]
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The standard Big Bang model

» Based on the current cosmological paradigm, the universe is a 4-dimensional
homogeneous and isotropic spacetime that started off as a Big Bang

The baby universe @ ~ 380,000 years old. Today, T ~ 2.726K, ‘%T ~ 1075,
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Tensions in the standard cosmology

Broadly speaking, two serious puzzles remain unanswered in standard cosmology:
» Early-universe problems
v~ Horizon problem
v~ Flatness problem
v’ Structure/smoothness/homogeneity problem
v Magnetic-monopole problem

ave back
.do\N grou,,o,
6‘\ %
. 9,
A
Ox.
©

300 000 years

Universe

The horizon problem
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Tensions in the standard cosmology. . .

» Late-universe problems
v" Rotational curves of galaxies
® Exact nature unknown
® No direct prediction, nor detection
v~ Cosmic acceleration: the cosmological constant as dark energy?

® Exact nature unknown
® The cosmological constant problem: 120 orders of magnitude discrepancy between two

predictions

26.8% Dark
ther
2 B
H N
z }
| e A
Distance

The current cosmic acceleration is attributed to dark energy, whereas the discrepancy between the
predicted (A) and observed (B) rotation curves of galaxies is attributed to dark matter
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Tensions. . .

Cosmological Constant Problem (vacuum catastrophe): measured energy density
of the vacuum over 120 orders of magnitude less than the theoretical prediction
V' Worst prediction in the history of physics (and of science in general)
v~ Casts doubt on dark energy being a cosmological constant

Cosmic Coincidence Problem: dark matter and dark energy densities have the
same order of magnitude at the present moment of cosmic history, while differing
with many orders of magnitude in the past and predicted future
Latest tensions vis-a-vis precise theoretical predictions and observational
measurements:
Ho CMB vs local measurements, more than 3o discrepancy
v" Planck2018, ACDM model
Ho = 67.27 £ 0.60 km/s/Mpc
v Estimate using SNla measurements (2016)
Hy = 73.24 & 1.74 km/s/Mpc
v Parallax measurements of Milky Way Cepheids (2018)
Ho = 73.48 £ 1.66 km/s/Mpc

Sg vs cosmic shear data, more than 2.50 discrepancy between Planck data and

local measurements of
Sg = 084/ Q2m/0.3

og measures the amplitude of the linear power spectrum on the 8h~1Mpc scale
Q, zero or not zero? ACDM assumes flat universe, but Planck temperature and
polarisation power spectra give an above 30 deviation:

~ +0.018
Qx =~ —0.044_04015
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New frontiers: some suggested solutions

» Inflation: solves early-universe problems. Or does it?
V' Exact mechanisms (of start and end of inflation) still debatable
v Over a 100 different models of inflation!

Infiaticnary
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The horizon problem resolved
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betwesn wo
standard
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Could this universe be just one realization of an infinite cycle of big bangs and big crunches?

Cyclic universe models?

Vary "open’
universe

'Open” universe
expands lorever

Prosont

'Cloged" 'Ozcillating
unlverse

universe
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theory says nothin
about'what banged,

The B Bang

why 1t banged
orwzat ha p%ned
beforeitbanged

Alan Guth

But what banged?



Inhomogeneous cosmological models?

(B hermatic)

Walls, voids and other inhomogeneities exist in the universe
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https://hk.space.museum/archive/EducationResource/Universe/framed_e/lecture/ch19/ch19.html

Inhomogeneous cosmological models?. . .
» Lemaitre-Tolman-Bondi (LTB) models- isotropic expanding (contracting) but not
homogenous solutions
» Szekeres models - LTB with no symmetry

A large class of inhomogeneous solutions
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Anisotropic cosmological models?

» Anisotropic cosmological models?

Temperature fluctuations of the CMB according to WMAP
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https://www.nasa.gov/feature/making-sense-of-the-big-bang-wilkinson-microwave-anisotropy-probe

the evolution history of the universe

At early times, the universe was full of anisotropies with a highly irregular

mechanism that isotropized later

In fact, there are several claims regarding some degree of anisotropy in the
observed universe that necessitates the consideration of a non-FLRW geometry
There is a need for scrutiny of cosmological models that describe an early-time
anisotropy with a proper mechanism to produce [near] isotropy at late times on
the one hand, and an accelerated expansion at the present epoch on the other
Bianchi models to the rescue: homogenous but anisotropic cosmological models

v" 9 possible cosmological solutions

v~ Bianchi-l and Bianchi-V are the simplest, and probably the most widely explored

Bianchi solutions
Since the isotropy assumption is only an approximation on large scales, there is
the possibility that relaxing these assumptions may lead to solutions explaining

Group Class | Group Type | ny n2 ng
-+ 0 0 0
17 + 0 0

Vi 0 +
A (a; =0) VIl 0 + +
X + + +
B (a; #0) %4 s ().
v 0o 0 +
Vi, 0 + -
VI, 0 + +

Bianchi classifications
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Changing [fundamental] ‘constants’?

» Dirac’s hypothesis 3 that the gravitational constant decreases with time has been
a matter of scrutiny for some time, but recent attempts to consider both A and
the universal gravitational constant G as dynamical quantities, and therefore not
as constants, has gained more attention due to the aforementioned
not-so-well-explained cosmic acceleration.

» Different forms of changing A and G assumptions exist in the literature, such as:

A= 4 BH, G=Gpa
a

v~ Constants a , 8, § etc to be determined from both theoretical and observational
considerations

356 %; physical constants depend on the age of the universe t.
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Bianchi-I cosmologies

» The Bianchi type-/ is identified by the metric of the form *
ds? = —dt? + A%(t)dx? + B%(t) dy? + C?(t) dz?

where A(t), B(t) and C(t) are the scale factors along x, y and z direction

» Perfect-fluid cosmic matter distribution is given by the following
energy-momentum tensor:

Tjj = (P + p)uiuj + pgij

where p is matter density, u’ = 6 = (—1,0,0,0) is the normalized fluid
four-velocity, which is a time-like quantity such that v'u; = —1, and p is the
fluid's isotropic pressure that is related to mater density through the barotropic
equation of state (EoS) p = wp, with

0 for dust
w=<(1/3 for radiation
-1 for dark energy

4A|fedee|, A. H., & AA. (2022), The evolution of time-dependent A and G in multi-fluid Bianchi-I models, Open
Astronomy 31 198 (2022)
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» The Einstein Field Equations with time-dependent A = :‘7 + BH?, where
a = (ABC)'/3 is average scale factor, H =1/3 (% + g + %) is the average

Hubble parameter, and G = G(t) and the conservation of T¥ (i.e, V;T¥ = 0)
are reduced to the energy density evolution

o+ (p+p) A + B + ) - 0
P pT P A B c)”
giving a solution for the energy density as

PO

p= 23(1+w)

where pg corresponds to the current value of the energy density

» The generalized Friedmann equations read:

87Gp — A = (2 — 1)H? — 52
8nGp + A =3H? — o2
where o is the shear modulus, g is deceleration parameter. Or alternatively

42 «

3
-+ @2-8)7 — = =4nG(t)(p— p)
a a a
» The time evolution equation connecting G and A can be given by
87rpG +A=0
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» Let's introduce

Qio

The Numerical Solutions

» Background evolution

where we have used

1

(=]

[&]

_ 8nGo - 3H;

S3R M T T g,
@,
dt
dZz  (2-B)Z% «
% . ' a
dG 73
E=C2§+C3¥*C4

the following short-hands:

_ 3Hg

T 26y

_ 2a(1-78)Go
3H?

_ 2B(3—-B)Go

N

Qio(1 + z)*™)

(2.1)
+aSG (2.2)
z
56 (2.3)

20,
(Qmo(l +2)3 + To(l +2)* + 2QA0)

2Q,
c=B (Qmo(l +2)3 + To(l +z2)* + 2Q,\0)
» Qmo + Q2r0 + Qa0 = 1 by definition
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» Rewrite Eqs. (2.2) and (2.3) in redshift space
ﬂ_(3—B)H a(l+z) a6

dz (1+z) H (1+2z)H
dG c3 H?
— =—(1 - G
dz @(1+2) 1+2) to
» Define the dimensionless parameters :
H A G a
h=—, A=—, = —, = —
Ho NDOET G T

» Equations in dimensionless parameters
dh_(3-8), (1+2)

g
X
(14 2)h

dz ~ (1+72) h
2Q,
(Qmo(l +2)3+ To(l +2)* + 252/\0)

3
2

y 20,
%5 (ﬂmo(l v2p + 0oy 29/\0) g

28 h? 2
- —QB-8)— - —=(1- 1
3 ( 6)1+Z 3 1-H0+2)
» The deceleration parameter is then
_ (1 +2)?
qg=(2-5) - e

3 3 2Qr0 4 g
3 (Qmo(l +z)° + T(l +2z) 4+ ZQ/\O) =l

(2.4)

(2.5)

(2.6)

(27)
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» Observational values used from Planck-2018 5

QmO =0.3111 5 Q/\o = 0.6889 ) QrO = l—Qmo—Q/\o y Ho = 67.37km/s/Mpc

» Initial conditions used
h(0) =g(0)=1, pB=0.02

N2IN

-4
3.0 0.0

g Vs z.

Variation of A and G with redshift

5Planck Collaboration: Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys 641, A6 (2020)
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Bianchi-V cosmology

» Here we consider the Bianchi type—V with spacetime metric of the form®
ds? = dt? — A2dx? — 2™ [B%dy? + C2dz?]

where m is constant

» We assume that the universe is filled by a viscous fluid whose distribution in
space is represented by the following energy momentum tensor:

Ty = (p+ P)uju; + bgj—2n0;, p=p—(3§—2n)H

where 7 and £ are coefficients of shear and bulk viscosity respectively, oj; is the
shear and p is the effective pressure

» Assume a linear equation of state
p=wp, -1<w<l

» The shear tensor is given by

. 1
ojj = (u,-;khj‘f + uj;kh,’f) — §0h,-j ,where hj; = gjj + uju;

6Tiwari, R.K., Alfedeel, A. H., Sofuoglu, D., AA, Eltagani, I.H., & Shukla, B. H. (2022), A cosmological model
with time-dependent A, G, and viscous fluid in General Relativity, Front. Astron. Space Sci. 9 965652 (2022)
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» The V/ Ti; = 0 equation leads to the fluid continuity equation:

5+ (P + p) A + B + ¢
P PTp A B C
» Split this into the following two equations (total matter content conserved):
p+3H[p+p— (3¢ — 2n)H] — 4no® =0

kG +kpG +A—4kGno® =0

kpG+A=0
» Meanwhile, the EFEs can be written in terms of H, o and q as
2 ), m
H@*/\:H (2Q71)*O' +ﬁ

3m?
— 2 2
kGp+N=3H" -0 ~ e

with

3 1 /A B C aa
=@BO)3, H=2=-(24+21+%2), g=-22
2= (ABC)  3laTBTC 1I="%

(-9 (-9 ()

» The generalized Raychaudhuri equation reads:

. 2m? G 3
H+3H2—T’Z—/\Jr%(p—p)—nc(f—n)H:o
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The background solutions

» To find the solution by introducing extra information in the form of initial
conditions and a constraint, we consider the following form of the Friedmann
Equation:

1:Qm+Q/\+Qo'+QX

where the density parameters are defined as:

kGpm KGpp a? K?
, Qp = s Qo = — , Q= ——
3H2 AT 3HR 3H2 X = g

Qm =

» The current values of these dimensionless density parameters are given in terms
of the current values of the quantities that describe them, as

KGopmy "= kGopp, Q. = 7 Qy, = K2
2 0 2 0 2 0™ 2.2
3H; 3Hg 3H; Hg ag

Uy =

» We also define the following dimensionless parameters:

H 1

TR a )
Hop (1+Z)

h

& = aHo(pm/pmo)" , n=pH

with o, B and 0 < n < % introduced as dimensionless constants



» We assume the ansatz, in accordance with Dirac’'s hypothesis
G(t) = Gya’

» Here, § = —1/60 is a constant obtained from observational constraints’ 8
» The conservation equations in terms of the dimensionless density parameters:

h 3
h=———3-20Q, —-305— =(1— QOi|
s [ 2% 3 - 30— )

_ kGo -3£ hQm(1 + 2)° n—,Bh
(].-‘,—Z)]'Jr‘S 2 QmO
2h 1
Q =—-"Qn+—(=6+3+3wn)Un
m a +1+Z( + 34 3wm)
kGo [3a PQm(1 + 2)° !
7(1+Z)1+5 h< Qmo 725+4690
2h 4
Q=——"—Qp——Qnm
A h N1tz
2h 2Q
Q/ —_2 0 X
x h x 1+2z’
2h Qo
=g, 0
h 14z

"Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar laser ranging tests of the equivalence principle with the
earth and moon. Int. J. Mod. Phys. D 2009, 18, 1129-1175
8Copi, C.J.; Davis, A.N.; Krauss, L.M. New nucleosynthesis constraint on the variation of G. Phys. Rev. Lett.
2004, 92, 171301
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The variation of G for viscous Bianchi type-V cosmological model vs redshift

~ 2.5% change in G in about 12 billion years!
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The variation of the density parameters for viscous Bianchi type-V cosmological model vs redshift.
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Evolution of the scalar perturbations

Evolution of the matter perturbations °:

as 3 L, G (Pt )’ "7%h _ 4BrGy Qo
(14 2) Qmh(1 + z)9 Qmo 3 3(1+2)% Qnm

RPon(+2)° " whQy,
an ( Qmo ,ico(1+nz)fé A
(w)hQm {a (hZQ,;z(1+z)5) _ %h}

+4BQU kGo
3Qm (1+2z)0

kGo(1+2)—9% mo

1 xGo RQm(1+2)°\" 28 48KGy Qo
h(1+z){1+Wth(1+Z)6 ( — h| — ——

Qo 3 3(1+2)° Qm
wan+2)°\" _ 48
L4892 KGo “ ( 2mo st z
3Qm h(1+2)° | (arwyhon Pn(+2)° \" _ 26,
wG - |\ T am ) T3

88kGy V30,
3h(1+ 2)5+t1 Qp

S=0 (2.8)

9AA, Alfedeel, A. H., Sofuoglu, D., Eltagani, I.H., & Tiwari, R.K.. (2023), Perturbations in Bianchi - V
spacetimes with varying A, G and viscous fluids, Universe 9, 61
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Evolution of the perturbations. . .

Evolution of the perturbations in the expansion:

, 1 3 kG RPQn(1+2)°\" 48
z (1+z)h{2h2(1+z)5 {a( Qo ) 7?"}

Rom+2)? \" 48
3

[e3

2mo

 rwran Roni2° " 28

®Gy(1+2)— 0 h [O‘ ( Qmo sh

3 Qmh 3 Go [ HQn(1 o\

+ ol (14 Bw)— 2 S mil 1 2)

1+2z)| 2 2(1+42) Qmo

Woni+2)® )"  whOn
om( Qmo KGy(1+2)— 9

+

(+w)h2Qm h h2Qpm(1+2)8 " _ 28y

NG[)(1+Z)76 « Qmo 3

4/Q, S—

(1+2)

[7hh'(1 T2)+ ghzﬂx - %(1 4 2)2:| ] }z

[7hh'(1 +2)+ ghzﬂx - %(1 + z)z} } A
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Evolution of the perturbations. . .

Evolution of the shear perturbations:

P12’ " a8
O‘(szimo —3h

3 3Q,

S — S — 1+ z
(14 2) (14 2) Q+w)hQm 2on(+2)° \" _ 28,
KkGy(1+2z)—9 « Qmo 3
an [ Pon(+2)° T
3hV/30, Qmo 1Go(1+2)~° A=0
(1+2) )y | [ HPm(1+2)0 " 28 -
KGo(1+2) 3 2mo 3
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Solutions of the matter perturbations
Fix the background expansion history
Set initial conditions at some redshift z;,, solve the system of perturbation
equations for A(z) and compare it with that of standard GR/ACDM
Azin) =107%,  Z(zn) =107%, ¥(zj) =107°
Let's first define the normalized matter density contrast

A(2)

i(z) = Alzn)

(2.9)

with zj; = 20 in both GR/ACDM and our current models

We have also used the following dimensionless viscosity parameters:
a=0.312,8=1,n= 0.2, as well as the current values from PLANCK2018:

Qmo = 0.3111, Q0 =0.6889, Q,0=—0.0007, Qo= 1—Qmo—0—2y0

The following are some of the highlights of our observations:

v Increasing o decreases the late-time perturbation amplitude in the short-wavelength
regime, but this effect is reversed for z 2> 0.65

v Increasing « increases the perturbation amplitude in the long-wavelength regime

v Increasing 3 increases the perturbation amplitudes in both the short- and
long-wavelength regimes

V' Increasing n increases the perturbation amplitudes in both the short- and
long-wavelength regimes
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Growth of matter density perturbations §(z) vs z. Left: for ACDM and GR without A (2, =1,
Qa = 0); Right: for the Bianchi type-V model for non-viscous (o = 0 = 3) fluid, but with
changing G and A
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Growth of matter density perturbations 6(z) vs z for the viscous Bianchi type-V cosmological
model. Left: for long-wavelength regimes; Right: for short-wavelength regimes
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Growth of matter density perturbations 6(z) vs z for the viscous Bianchi type-V cosmological

model. Left: for varying values of «; Right: for varying values of 3
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The variation of the matter density perturbations §(z) for a viscous Bianchi type-V cosmological
model vs. redshift for v = 50, a = 0.3, 8 = 1 and different values of n.
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Interacting dark-fluid models
The EMT for perfect-fluid models is given by

Tuv = (p+ P)upty + pguv

The divergence-free EMT T#¥,, = 0 leads to the fluid conservation equation
a
TH . =0 = p+ 3;(1 +w)p=0

In a multi-component fluid system, it is usually assumed that the energy density
of each perfect-fluid component is assumed to evolve independently of the other
fluids of the system:

pi+3H(L+w)p; =0

and in this case the EMT is the algebraic sum of the EMTS of each fluid, so are
the total energy density and total pressure terms the algebraic sums of the
individual components

However, if we relax this assumption due to the presence of diffusion, the
individual components do not obey the matter conservation equation, but the
total fluid still does. For the the ith component fluid, the new conservation
equation reads:

py o
THY = N

i

where NY corresponds to the current of diffusion term for that fluid
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Background solution

» One can write the non-conservation equation for the fluid as 1°:

é .
pi+32(1+w)pi= 1
a a

where «; is a constant for that fluid such that Zi v =0

» Integrating the above equation gives

ot
pi = 373(1+w,') |:Pi0+'yi/ a?)W,-dt_/:|
to

where pjo is the present-day (t = tg) value of the energy density of the ith fluid

» Using a late-time, i.e., t — tp < tp, expansion and expressing
a(t) = ap [L — (to — t)Ho) + .. .], we can write ! the last term of the above
integrand as

t t
/ aVidt = / Wi [l — (to — t)Ho) +...]3" dt’ (3.1)
ty ty

10Maity, S., Bhandari, P., & Chakraborty, S. (2019). Universe consisting of diffusive dark fluids: thermodynamics
and stability analysis. The European Physical Journal C, 79(1), 1-8.
1RR Mekuria, AA (2023), Observational constraints of diffusive dark-fluid cosmology, preprint arXiv:2301.02913
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» Evaluating the previous integral and applying Taylor expansion around tgy yields

t
1 _ .
/ a*idt =———— [(1+ (to — )HO)" — (1 + (to — t)Ho) " + ... ]
% 14 3w;
~ 1— (1+ (to — t)Ho) ™3™
17 3m [1— (14 (to — t)Ho)" "]
1 14+3w;
[ — Rl - i
(1+ 3wi)Ho [1- -]

where in the last step, we have normalised the scale factor to unity today: ag =1

» The energy density of each diffusive fluid component is given according to the
below relation:

o o-3(14w) ) i (9 _ \1+3w;
pi=a {P10+(1 T 3Wi)HO [1 (2 a) ] }

» Assuming the well-known component of radiation, dust-like matter (baryons and
dark matter) and vacuum energy, the above diffusive solution leads to:

pr:a*“{ 27;0 [1—(2—a)2]}
o= { om0 + 21— 2 - a1}

P/\:PAO_ﬁ[l_Q_a) ]

39/715



Let us now consider the Friedmann equation for the ACDM model for k = 0:

e 8 G _3 _3 TN -2
&= I {pwat pmoa R - @ e oo [1- 2 - 77}

We assume the diffusive interaction is limited between dark matter and dark
energy for now, i.e., 7+ = 0, and introduce the following dimensionless quantities:

8 G 87 G H
Qi i Ai i 1 = -1 ) h TR
32" 33" tr=a Ho

We can then show that the Friedmann equation can be recast as

1 1/1+2
W = Quo(142)* + Quo(1+2)° + Qpo—Amz(1 +2)2 — Ap | = — = ( Z)
2 2\1+z

Moreover, defining the deceleration parameter as

da  4nG
=5 = WZpi(1+3wi)

we can show that for our current model, we have

2Q,0(1 + 2)* + Qmo (1 + 2)® — 2Qpo—Amz(1 + 2)? + Ap [1 - (1112;) 72}

QZE

—2
Qo1+ 2)* + Quno(1 + 2 + Quo—Bunz(1 + 2 — A {% -4 (¥%) }
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Some constraints from data

Four diffusive cases of the model and their best-fitting parameter values.

Models h Qmo Qo A Ap
Diffusive Case | 0.6966 | 0.2678 | 0.00050 | 0.00252 | -0.00251
Diffusive Case Il | 0.6955 | 0.3134 | 0.00050 0.1246 -0.1244

ACDM 0.674 0.315 | 0.00050 0 0
Diffusive Case IIl | 0.6967 | 0.2655 | 0.00050 | -0.00251 | 0.00246
Diffusive Case IV | 0.6976 | 0.2283 | 0.00050 | -0.10747 | 0.10426
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The MCMC simulation results for Case I, with the “true” values for Q0 = 0.315, h = 0.674, and
Q. = 2.47 x 107° /h2 provided by the Planck2018 data. 100 random walkers and 10000
iterations
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Q. = 2.47 x 107° /h2 provided by the Planck2018 data. 100 random walkers and 10000

iterations.
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Diffusive Model: Qr = 02678, h = 0.6966, Q = 0.00050, A = 0,00252, & = -0.00251
200

—— ACDM model using Planck 2018 values
— ACDM model based on MCNIC data
180 | — Diffusive model based on MCMC data
10 range for the diffusive model

140

Hubble Parameter H{z)lkmisHpc]

000 025 050 150 175 200

2
Cosmological Redshift (z)

The Hubble parameter vs redshift for Case I.
The blue curve represent the result obtained by
considering diffusive fluid and employing
MCMC simulation, with 1-o deviation result
displayed in yellowish shaded region. The red
curve represents ACDM cosmology result using
MCMC simulation where as the green curve
represent one obtained directly by using the
Planck 2018 data for the purpose of
comparison.

Diffusive Model: O = 0.3134, h = 0.6955, O = 0.00050, A, = 0.12469, & = -0.12440

—— ACDM model using Planck 2018 values
— ACDM model based on MCMC data
180 | = Diffusive model based on MCMC data
10 range for the diffusive model
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Cosmological Redshift (z)

The Hubble parameter vs redshift for Case Il.
The blue curve represent the result obtained by
considering diffusive fluid and employing MCMC
simulation, with 1-o deviation result displayed
in yellowish shaded region. The red curve
represent ACDM cosmology result using MCMC
simulation where as the green curve represent
one obtained directly by using the Planck 2018
data for the purpose of comparison.
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Diffusive Model: O = 0.2678, h = 0.6966, Qr = 0.00050, Ap = 0.00252, Ay = -0.00251

Diffusive Model: O = 0.3134, h = 0.6955, Q- = 0.00050, A = 0.12469, A
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The graph of deceleration parameter vs redshift

for Case I.
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The graph of deceleration parameter vs redshift

for Case Il.



The MCMC simulation results for Case Ill, with the “true” values for Q0 = 0.315, h =0.674,
and Q,0 = 2.47 x 1072 /h2 provided by the Planck2018 data. 100 random walkers and 10000

iterations.
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The MCMC simulation results for Case 1V, with the “true” values for Q2,0 = 0.315, h = 0.674,
and Q,0 = 2.47 x 1072 /h2 provided by the Planck2018 data. 100 random walkers and 10000

iterations. 47/75
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Hubble parameter vs redshift for Case Il
blue curve represent the result obtained by

considering diffusive fluid and employing
MCMC simulation, with 1-o deviation result
displayed in yellowish shaded region. The red
curve represents ACDM cosmology result using
MCMC simulation where as the green curve
represents one obtained directly by using the
Planck 2018 data for the purpose of
comparison.
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The Hubble parameter vs redshift for Case IV.
The blue curve represents the result obtained
by considering diffusive fluid and employing
MCMC simulation, with 1-o deviation result
displayed in yellowish shaded region. The red
curve represents ACDM cosmology result using
MCMC simulation where as the green curve
represent one obtained directly by using the
Planck 2018 data for the purpose of
comparison.
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Diffusive Model: O = 0.2655, h = 0.6968, Qr = 0.00050, An = -0.00251, A = 0.00246 Diffusive Model: O = 0.2283, h = 0.6977, Q- = 0.00050, Ap = -0.10747, A = 0.10426
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Models Am Ap XZ Red.x2 AlC |AAIC| BIC |ABIC|
Diffusive Case Il +ve -ve 242.3355 0.6845 252.3355 4.9405 271.7521 12.7072
Diffusive Case | +ve -ve 241.4118 0.6819 251.4118 4.0168 270.8285 11.7835

ACDM 0 0 241.3950 0.6780 247.3950 0 259.0449 0
Diffusive Case Il -ve +ve 241.3781 0.6818 251.3781 3.9831 270.7947 11.7497
Diffusive Case IV -ve +ve 240.7872 0.6801 250.7872 3.3922 270.2039 11.1589




Some highlights

They may be potential models to alleviate the cosmic coincidence problem by
stabilising the ratio of dark matter to dark energy in both the past and future

These models also predict a wide range of the values for Hp, thereby showing
potential as a candidate for relieving the Hubble tension

Cases having positive values of Ay, were showing the largest values of likelihood
function. Based on the analysis of likelihood, goodness of fit, AIC and BIC
criteria, one can conclude that overall Case | is the most likely to be an
alternative to the ACDM model.

Current work is to provide a viability test of the different cases considered, but to
reject or accept any of them more work is needed
Future directions: putting more stringent constraints on the values of the defining
parameters of the model:
v~ With more rigorous data and statistical analysis — using existing and upcoming
cosmological data
V' Studying large-scale structure power spectrum, ISW effects, and other methods



More general interaction models

» For more general interactions
pdm+3dem =Q N pde+3dee(1+w) =—-Q

where Q is the rate of energy exchange, which defines the direction of energy
flow between the dark sectors such that:

> 0 Dark Energy — Dark Matter
Q= (¢ <0 Dark Matter — Dark Energy
=0 No interaction (ACDM case)

» Model 1: @1 = §Hpgm
Pdm = P(dm,0)a° )

a=304wa) 4 ¢ [a3 = 4] a2

Pde = P(de,0) (dm,0) m

» Model 2: Q> = §Hpqe

_ 5 L (5430)]
Pdm = Pdm0)d > +P(de,o)m [1 — 5 (0F3 )] a”?

Pde = Plaegya OT3H3)
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The cosmic coincidence problem may now be addressed by considering how the ratio of
dark matter to dark energy r = (pdm/pde) evolves with redshift z. Here it can clearly
be seen that for the ACDM case, the current value of rg = (%) seems fine tuned and
coincidental in comparison to Q1 and Q, where r converges and becomes constant in
the past and the future respectively. Thus, alleviating the cosmic coincidence problem

1016
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106

r=(0dm/Pde)
S 5

i — ACDM

A Q1 =06Hpdm
A R Q2 = 6Hpqe
} ——- Present
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Cosmic Coincidence Problem
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Messing with Gravity

» GR incomplete? Einstein generalized Newton's theory, and Newton modified
earlier theories (such as Aristotle’s), maybe it's time to rethink GR’s unique
status...

V" Theories of Gravity with Extra Fields
e Scalar-Tensor theories, e.g., Brans-Dicke theories
e Einstein-Ather theories, e.g., MOND
o Bimetric theories
e Tensor-Vector-Scalar theories (TeVeS)
v~ Higher-dimensional Theories of Gravity
e Kaluza-Klein (KK) theories
e Braneworld models
e Randall-Sundrum (RS) models
e Dvali-Gabadadze-Porrati (DGP) gravity
e (Einstein)GauB-Bonnet (GB) gravity
v~ Higher-derivative Theories of Gravity

Theories with Ricci and Riemann curvatures in the action
Hofava-Lifshitz gravity

Galileons

f(R) theories: fourth-order theories. Come with far richer solutions
than GR.



Einstein-Dilaton-

Gauss-Bonnet Cascading gravity oo beren= R Conformal gravity
‘Hofava- Lifschitz
i R o ;
Strings & Branes 7 (7) R0 1 R# £(G)
DGP L Some |
Randall-Sundrum | & 1 d tati
2T gravity egraztion ngher-o rder

scenarlos

Higher dimensions Non Iocal Genem R,

‘ OR,etc.

Kaluza-Klein

Modified Gravity o O

Elnstem Aether

Generalisations

“Lorentz viohton

of SeH |
Teves — Add new field content Massive gravity
Gauss-Bonnet \ Bigravity
. Chern-Simons

Scalar-tensor & Brans-Dicke TenSOI“

Lovelock gravity  Ghost condensates Ciiseiion -
Galileons
Chaplygin gases Bimetric MOND
Emergent | ElEiets Scalar . IMmele
Approaches | <8 _ . 1)
CotRlediQuiescence Elnsteln Cartan-Sciama-Kibble !
Padmanabhan B I
CcDT TRarm, Horndesld theories R

Some alternative gravity models. [Credit: Tessa Baker, arXiv 1512.05356]


https://www.physicsforums.com/threads/what-is-our-understanding-of-dark-matter.973881/

f(R) gravitation

» Einstein-Hilbert action for ACDM cosmology:
Agr = */d“X\/ glR+2(Lm —A)]

v~ Corresponding Einstein’s field equations:

Gab + Ngap = Tap

» f(R) models are a sub-class of fourth-order theories of gravitation, with an action

of the form
Afry = /d“x,/ g[f(R) +2Lm]

v Corresponding f(R)-generalized Einstein field equations:
f'Gap = Tip + 3(f — RF)gap + Vo Vaof — gap Ve VEF’

V" Because of the highest order of the derivatives in these field equations, f(R) is a
fourth-order theory of gravity
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Field equations

» Simplest generalizations to GR
» An extra degree of freedom
» Cosmological viability:
v~ Observational constraints
v' Theoretical constraints: integrability of the field equations
» Generic viability conditions on f:
V" To ensure gravity remains attractive

>0 VR

v’ For stable matter-dominated and high-curvature cosmological regimes (nontachyonic
scalaron)
f''>0 VR> "’

V" GR-like law of gravitation in the early universe (BBN, CMB constraints)
f(R
lim % =1=f <1

R—o0

V" At recent epochs
-1 <1



Covariant thermodynamics

The matter-energy content of the Universe is specified by

Tab = (IJ‘ + P)Uaub + pgab + q(aub) + Tab

» Curvature and total fluid thermodynamics

1 . .

R =2 [ (Rff — ) — @f”R-&-f”VzR}
1

PR = f-/ |: (ffRf/)+f”R+me2

+§ (ef”R — f'N?R — f”’@aR@aR)}
R 1 111 IS [ 1 11 A
a5 == |f"RVR+f VaR—gf OvV.R

1r,e - .. .
xR = & [V Ve R+ "V RV R — 0 RF

I3 p ok
pn= ?TJ"/LR y P= TT+pR ) qa = 7+qa y Tab = ;,b

£/ ab
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> The covariant derivative of the timelike vector u? = 2 is decomposed into its

. A dr
irreducible parts as

Vaup = —Asup + %habe + 0ap + 6abcwc

Ai=i,, ©=Vau?, o= @<aub> L w? =€V ue
» The trace-free part of the Riemann tensor defines the Weyl conformal curvature
tensor R
C?*ey = R* g —2gl2 RY y + gg[a[cgb]d]

v~ Split into its symmetric, trace-free “electric” and “magnetic” parts, E,p and Hap
respectively given by

— g h — 1 gh e d
E.p = Cagbhu u, H., = 5 Nae Cghbdu u

V' E,p represents the free gravitational field (tidal forces)
V" Hap is responsible for gravitational waves, no Newtonian analogue



FEvolution equations

» 1+ 3 covariant splitting of the Bianchi and Ricci identities
VisRocd® =0, (VaVi = VbVa)tic = Rapc” g

result in propagation and constraint equations

» The evolution equations uniquely determine the covariant variables on some
initial hypersurface Sy at tp:

fim = —(tm + Pm)® — VGl — 2Axq5, — 05Tl (4.1)

) fIr . .
fir = —(pr + PR)® + “:,2 R—V?qf —2A:q% —ojmyp  (4.2)

o= —%@2 - %(,u +3p) + VaA? — A A% — aabaab + 2w, w?
f];n = —%@q;" — (Mm + Pm)Aa - 6aPm - @bﬂ‘g},

- qu[r;n - Abﬂg], - Eabcwbq,sq
(4.3)
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FEvolution equations. . .

11
o = ~30qf + " G,R — Topr — 9Pxl, — olaf
— (1R + PrR)A; — Al — eapcw’ap
W, = 7%@@'3 — %eabC@bAC + O'Zwb
Gab = —300a — Eabp + 57ab + V (2Aby + AaAby — 0(a0s)c
— W(aWb)
Esp+ 3tap = ecd<NCH{,’> -0 (Eab + %ﬂ'ab) —L(p+p)ow — 3Viaan

+30f (Eb)c - %Wb>c) — A(aGb) + €cd(a [2ACH§’> + wc(Eff> + %w[‘;’) )]

Hab = —OH,, — Ecd<aﬁcE:> + %Eaﬂa@cﬂ'g) + 3Ua<ch)c
d

+ 3w — €c(a [2ACEZ> — %O’Z)(] — wCH,f)]

(4.4)

(4.5)
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Constraints

» Restrict the initial data to be specified; must remain satisfied on any hypersurface

S; for all t:

(CH, == VPo,, — %639 ~+ €abe (@bwc + 2Abwc) +qg,=0
(C?)ab = €ca(aVo1)? + V (awpy — Hap — 2A,wpy =0 (4.8)
(€*)a:=VPHap + (1 + p)ws + 3wy (E? — Ln?)
+ €abc [%@ch + 0bd (Edc + %ﬂ'dc)] =0
(€5 = VPE, + %@bﬁab - %@au + %9%
— Lobq, — 3wPH,p — eapc[0?HG — 3wPq ] =0

(C%) == Vws — Asw? =0 (4.9)
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Rotating and expanding universes

Classic GR result (Gédel, Ellis): shear-free perfect-fluid cosmological models
(homogeneous, inhomogeneous) cannot rotate and expand simultaneously, i.e.,

Ow? =0

» Turning off the shear from the propagation equations (4.5) results in a new
constraint equation 12

(Ca)ab = Eap — %Wab - 6(aAb) =0

» Demanding consistent spatial (curl) and temporal (time derivative) propagations
results in

1-w)P5 (1+w)@Bw+5)f' +4f"Q
@wa{ [ 3 T 6f' p’"]
w

e}

12AA, Goswami, Dunsby. Phys. Rev. D 84 124027 (2011)
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Some solutions

» Flat, vacuum solutions: if the 3-curvature R vanishes, then the GR result can
always be avoided for vacuum universes (um = 0), i.e., a shear-free, spatially flat

vacuum universe in any f(R) theory can rotate and expand simultaneously in the
linearized regime

» Non-vacuum case solutions: for a stiff fluid in R gravity, there exists a flat

Milne-universe solution which can rotate and expand simultaneously at the level
of linearised perturbation theory

V" This suggests that there are situations where linearized fourth-order gravity shares
properties with Newtonian theory not valid in GR
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Classes of non-rotating fluid models

» Fluid flows with vanishing vorticity w, = 0 will have the evolution equation (4.4)
turned into a new constraint

(C%)a = € VPA =0 = A, = V0

for some scalar v

» Specializing to dust models
w=0=pm, 5 =0=A,, 71';7,:07

we observe that irrotational shear-free dust spacetimes governed by f(R)
gravitational physics evolve consistently if 13

2\ f’ fr2 6f’
which is an identity

v This suggests that all irrotational shear-free dust spacetimes in f(R)-gravity are
self-consistent

3 f’” f-//2 i e 1
[ (— - ) R— 7} ccasVV GV R+ L ecaVV VIR =0

13AA, Elmardi. Int. J. Geom. Meth. Mod. Phys. 12 1550118 (2015)



Irrotational dust spacetimes with divH,, = 0

A necessary condition for the propagation of gravitational waves is the vanishing of
the divergence of a non-zero H,

» Prescribing this condition on the field equations results in a constraint:
F = ¥ap = 29,0 — Tbos

» A subclass of such models, called “purely radiative” dust spacetimes, is a
divergence-free E,,. Such models in f(R) gravity are constrained further as

Vapim + ' Vaug + FOgF — %@bwfb =

v~ In GR purely radiative irrotational dust spacetimes are spatially homogeneous:

Vapim =0
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Quasi-Newtonian universes

» Quasi-Newtonian universes: irrotational dust universes with purely gravito-electric
Weyl tensor, characterized by:

pm=0, Aa=0, q;n:;umva: 7";711;:0, wa =0, Hy =0

v" Potential models for the description of gravitational collapse and late-time cosmic
structure

» Choose a comoving 4-velocity &7 such that
P=uv"+v?, vau'=0, wvavi<<1,

where v? is the non-relativistic (“peculiar”) velocity and vanishes in the
background
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For this class of models, it can ne shown that
1 ~ -
EeabCVbAc =0 = A,=V.,$
1 .
Eap — §7rab - v(aAb) =0

For any fourth-order gravity model in which the anisotropic pressure 7, can be given
in terms of a scalar potential V¥ as

Tab = €<a@b)w
» Two generally independent integrability conditions for generic fluid models exist
14.
- - . 1 . . 1 . - -
VsV (<I> +50+ \u) + (¢+ 30+ w) VoV ® =0
.. . 2 . - .

6V,P + 60V, — (2;1, — 5@2) V.P +6V,V 4+ 60V,V

2.2\ ¢ 5 (&2 5
— (21 - 50 Vv —29,(V7w) —3¥,p = 0

» Identically the same in f(R) models, due to the linearized form of ﬂ'fb

14AA, Dunsby, Solomons. Int. J. Mod. Phys. D 26 1750054 (2016)
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» Modified Poisson equation
P = 2 (nt3p) - [3(640) + (b4 0) €]

» Velocity perturbations are scale-independent, as in GR, but matter density
fluctuations are scale-dependent

» Over regions of space-time where the Ricci curvature scalar is a slowly varying
function of space and time

v' f(R) (and its derivatives) are associated Laguerre polynomials
V" The peculiar velocity, 4-acceleration, total cosmic heat flux and anisotropic stress can

be analytically calculated explicitly
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Anti-Newtonian universes

» lrrotational dust universes with purely gravito-magnetic Weyl tensor —
anti-Newtonian universes, characterized by

pm =20, A, =0, q;":()» WZLZO, wa=0, Ep=0
V" Farthest possible models from Newtonian universes

» In GR, anti-Newtonian universes suffer from severe integrability conditions, no
known anti-Newtonian spacetimes that are linearized perturbations of
Friedman-Lemaitre-Robertson-Walker (FLRW) universes

» In fourth-order gravitational theories, anti-Newtonian models exist, subject to the
integrability condition 15

1

- S o 4f -
V2a5 = Va(VPa)) + Raf + — umOVLR =0

15AA. Class. Quantum Grav. 31 115011 (2014)
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» For flat universes (K = 0 = R) this holds only if

" um@®OVLR =0

v Impose pm # 0 and f”/ # 0. For a consistently evolving set of constraints in the flat,
anti-Newtonian spacetimes, either one of the following conditions must hold:

©=0 — static

V,R=0 —» homogeneous

» Closed & open universes (K = £1): any dust solution of

|:f"um® 2

= (Rf”’flef”) VaR 2f"
£ + 2 3 alk

?VQR =0

with f”/ # 0 is an anti-Newtonian solution
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Chaplygin gas cosmology

» The Chaplygin gas is a dark-fluid model whose EoS

P:—E

where A and « are positive constants, allows for a solution of the form:

B 1m=
B(ta)

u(a) = [A +

V' Early universe: p ~ a~3, behaves as dust (dark matter and baryonic matter)
1
V' Late universe: p ~ Al+a, behaves like dark energy

» Does the CG allow the simultaneous expansion and rotation of a shear-free
universe?
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» For a consistent propagation of the field equations in this model with o = 1 (the
original CG model)!6:

{6,u5 (n+40%) 434 (6;3 - gf??)
+Ap? [IN? (3u + @2) — 24u (u + @2)] }wa

—3A [QA (n—0?) —p? (3u—50%) | V2w =0 (5.1)

» This equation automatically reduces to the well-known shear-free dust result for
the case A =0:
wi(p+402%) =0

> Using V2w? = —Aw? yields

[6#5@ + 402) + 3A%(6p% — gf??)

+Ap? <I~?(3u +02) — 24u(p + @2))

+3AX <9A(u —02) — u2(Bu— 5@2)” w'=0

16AA., Al Ajmi, M., Elmardi, M., Nandan, H. & Sabah, N. Shear-free conditions of a Chaplygin-gas-dominated
universe. Int. J. Geom. Methods Mod. Phys. 2150192 (2021)
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Thus, any simultaneously expanding and rotating solution must satisfy (provided ©
remains real-valued):

A2 (9R?/2 — 182 — 272u) — 3Ap3 (R — 81— 3X) — 6.6
A (Ru2 — 2413 + 1502 — 27AN) + 2445

==

Some special cases for which simultaneously expanding and rotating solutions can
exist.

» For flat space, R=0,XA#0

o4 \/u(u2 —3A) 213 — A(2u + 3))]
A[9AN + p2(8u — 5A)] — 8u®

provided that the denominator is nonzero, i.e.,

A2 — 8413 £ /2502 4 208\ + 6472
18\

A

v ©%=0foronly A= {p?/3,2u>/(2n + 3\)}, it means that Eq. (5.1) can be satisfied
for non-vanishing w? and © provided A # {1?/3 ,21%/(2p 4 3)\)}

» For flat space, A = 0 and A # {u?, 4?/3} = we can have non-vanishing © and
w? provided

3A — u?
4p

0=+

14 /75



Summary

Cosmology has a long history of tensions
Potential solutions to solve - or at least alleviate - these tensions might lie
somewhere beyond the standard cosmological model based on:

v' General Relativity

v the Copernican (Cosmological) Principle
v~ Noninteracting cosmological medium

V' Perfect fluids

Relaxing these comes at a cost of more complexity, but it might be worth the
extra effort
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