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Reminders

I Modern cosmology based on the cosmological principle: the universe admits a
maximally symmetric (FLRW) spacetime
X Homogeneous: all regions of space look alike, no preferred positions
X Isotropic: no preferred directions

I Recent cosmological observations have shown that the universe is undergoing a
recent epoch of accelerated expansion

I Whereas it is not conclusively known what caused this recent cosmic acceleration,
the prevailing argument is that dark energy caused it

I Among the most widely considered candidates of dark energy is the vacuum
energy of the cosmological constant Λ

I Some serious problems associated with the cosmological constant, among them
the eponymous cosmological constant problem 1 and the coincidence problem 2

I Several alternatives proposed, such as:
X Inhomogeneous and/or anisotropic models
X Interacting dark fluids (dark matter and dark energy)
X Modifications to gravity

1Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61 (1), 1
2Velten, H. E. et al. Aspects of the cosmological “coincidence problem". Eur. Phys. J. C 2014, 74 (11), 1
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Why Gravity?
I Four fundamental forces in nature; why care only about gravity?

The fundamental forces of nature. [Credit: Socratic.org]
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https://socratic.org/questions/what-are-the-four-fundamental-forces-of-astronomy


What exactly is gravity?

Gravitation à la Newton and Einstein
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The geometrical “trinity" of gravity
I Three different geometrical representations of spacetime curvature possible

The geometrical meaning of curvature, torsion and non-metricity. [Credit: Jimenez et al, arXiv 1903.06830]
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The geometrical “trinity" of gravity...
I Three possible gravitational interpretations

Three alternative gravitational descriptions. [Credit: Jimenez et al, arXiv 1903.06830]
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The standard Big Bang model

I Based on the current cosmological paradigm, the universe is a 4-dimensional
homogeneous and isotropic spacetime that started off as a Big Bang

The baby universe @ ∼ 380,000 years old. Today, T ∼ 2.726K , δT
T ∼ 10−5.
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Tensions in the standard cosmology
Broadly speaking, two serious puzzles remain unanswered in standard cosmology:
I Early-universe problems

X Horizon problem
X Flatness problem
X Structure/smoothness/homogeneity problem
X Magnetic-monopole problem

The horizon problem
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Tensions in the standard cosmology. . .
I Late-universe problems

X Rotational curves of galaxies
• Exact nature unknown
• No direct prediction, nor detection

X Cosmic acceleration: the cosmological constant as dark energy?
• Exact nature unknown
• The cosmological constant problem: 120 orders of magnitude discrepancy between two

predictions

The current cosmic acceleration is attributed to dark energy, whereas the discrepancy between the
predicted (A) and observed (B) rotation curves of galaxies is attributed to dark matter
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Tensions. . .
I Cosmological Constant Problem (vacuum catastrophe): measured energy density

of the vacuum over 120 orders of magnitude less than the theoretical prediction
X Worst prediction in the history of physics (and of science in general)
X Casts doubt on dark energy being a cosmological constant

I Cosmic Coincidence Problem: dark matter and dark energy densities have the
same order of magnitude at the present moment of cosmic history, while differing
with many orders of magnitude in the past and predicted future

I Latest tensions vis-á-vis precise theoretical predictions and observational
measurements:

I H0 CMB vs local measurements, more than 3σ discrepancy
X Planck2018, ΛCDM model

H0 = 67.27± 0.60 km/s/Mpc
X Estimate using SNIa measurements (2016)

H0 = 73.24± 1.74 km/s/Mpc
X Parallax measurements of Milky Way Cepheids (2018)

H0 = 73.48± 1.66 km/s/Mpc

I S8 vs cosmic shear data, more than 2.5σ discrepancy between Planck data and
local measurements of

S8 = σ8
√

Ωm/0.3
σ8 measures the amplitude of the linear power spectrum on the 8h−1Mpc scale

I ΩK , zero or not zero? ΛCDM assumes flat universe, but Planck temperature and
polarisation power spectra give an above 3σ deviation:

ΩK ≈ −0.044+0.018
−0.015
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New frontiers: some suggested solutions
I Inflation: solves early-universe problems. Or does it?

X Exact mechanisms (of start and end of inflation) still debatable
X Over a 100 different models of inflation!

The horizon problem resolved
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Cyclic universe models?

Could this universe be just one realization of an infinite cycle of big bangs and big crunches?
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But what banged?
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Inhomogeneous cosmological models?

Walls, voids and other inhomogeneities exist in the universe
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https://hk.space.museum/archive/EducationResource/Universe/framed_e/lecture/ch19/ch19.html


Inhomogeneous cosmological models?. . .
I Lemaître-Tolman-Bondi (LTB) models- isotropic expanding (contracting) but not

homogenous solutions
I Szekeres models - LTB with no symmetry

A large class of inhomogeneous solutions
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Anisotropic cosmological models?

I Anisotropic cosmological models?

Temperature fluctuations of the CMB according to WMAP
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https://www.nasa.gov/feature/making-sense-of-the-big-bang-wilkinson-microwave-anisotropy-probe


Bianchi solutions
I Since the isotropy assumption is only an approximation on large scales, there is

the possibility that relaxing these assumptions may lead to solutions explaining
the evolution history of the universe

I At early times, the universe was full of anisotropies with a highly irregular
mechanism that isotropized later

I In fact, there are several claims regarding some degree of anisotropy in the
observed universe that necessitates the consideration of a non-FLRW geometry

I There is a need for scrutiny of cosmological models that describe an early-time
anisotropy with a proper mechanism to produce [near] isotropy at late times on
the one hand, and an accelerated expansion at the present epoch on the other

I Bianchi models to the rescue: homogenous but anisotropic cosmological models
X 9 possible cosmological solutions
X Bianchi-I and Bianchi-V are the simplest, and probably the most widely explored

Bianchi classifications 16 / 75



Changing [fundamental] ‘constants’?

I Dirac’s hypothesis 3 that the gravitational constant decreases with time has been
a matter of scrutiny for some time, but recent attempts to consider both Λ and
the universal gravitational constant G as dynamical quantities, and therefore not
as constants, has gained more attention due to the aforementioned
not-so-well-explained cosmic acceleration.

I Different forms of changing Λ and G assumptions exist in the literature, such as:

Λ =
α

a2
+ βH2 , G = G0aδ

X Constants α , β , δ etc to be determined from both theoretical and observational
considerations

3G ∝ 1
t ; physical constants depend on the age of the universe t.
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Bianchi-I cosmologies

I The Bianchi type-I is identified by the metric of the form 4

ds2 = −dt2 + A2(t)dx2 + B2(t) dy2 + C2(t) dz2

where A(t),B(t) and C(t) are the scale factors along x , y and z direction
I Perfect-fluid cosmic matter distribution is given by the following

energy-momentum tensor:

Tij = (p + ρ)ui uj + pgij

where ρ is matter density, ui = δi
t = (−1, 0, 0, 0) is the normalized fluid

four-velocity, which is a time-like quantity such that ui ui = −1, and p is the
fluid’s isotropic pressure that is related to mater density through the barotropic
equation of state (EoS) p = wρ, with

w =

0 for dust
1/3 for radiation
−1 for dark energy

4Alfedeel, A. H., & AA. (2022), The evolution of time-dependent Λ and G in multi-fluid Bianchi-I models, Open
Astronomy 31 198 (2022)
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I The Einstein Field Equations with time-dependent Λ = α
a2 + βH2, where

a = (ABC)1/3 is average scale factor, H ≡ 1/3
(

Ȧ
A + Ḃ

B + Ċ
C

)
is the average

Hubble parameter, and G = G(t) and the conservation of T ij (i.e., ∇j T ij = 0)
are reduced to the energy density evolution

ρ̇+ (ρ+ p)
(

Ȧ
A

+
Ḃ
B

+
Ċ
C

)
= 0

giving a solution for the energy density as

ρ =
ρ0

a3(1+w)

where ρ0 corresponds to the current value of the energy density
I The generalized Friedmann equations read:

8πGp − Λ = (2q − 1)H2 − σ2

8πGρ+ Λ = 3H2 − σ2

where σ is the shear modulus, q is deceleration parameter. Or alternatively

ä
a

+ (2− β)
ȧ2

a2
−
α

a2
= 4πG(t)(ρ− p)

I The time evolution equation connecting G and Λ can be given by

8πρĠ + Λ̇ = 0
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The Numerical Solutions
I Let’s introduce

Ωi0 ≡
8πG0

3H2
0
ρi0 =⇒ ρi =

3H2
0

8πG0
Ωi0(1 + z)(1+w)

I Background evolution
da
dt

= Z (2.1)

dZ
dt

= −
(2− β) Z2

a
+
α

a
+ c1SG (2.2)

dG
dt

= c2
Z
a3

+ c3
Z3

a3
− c4

Z
a2

G (2.3)

where we have used the following short-hands:

c1 ≡
3H2

0
2G0

(
Ωm0(1 + z)3 +

2Ωr0

3
(1 + z)4 + 2ΩΛ0

)
c2 ≡

2α(1− β)G0

3H2
0

c3 ≡
2β(3− β)G0

3H2
0

c≡β
(

Ωm0(1 + z)3 +
2Ωr0

3
(1 + z)4 + 2ΩΛ0

)
I Ωm0 + Ωr0 + ΩΛ0 = 1 by definition
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I Rewrite Eqs. (2.2) and (2.3) in redshift space
dH
dz

=
(3− β)
(1 + z)

H −
α(1 + z)

H
−

c1G
(1 + z)H

(2.4)

dG
dz

= −c2(1 + z)−
c3H2

(1 + z)
+ c4G (2.5)

I Define the dimensionless parameters :

h ≡
H
H0

, λ ≡
Λ
Λ0

, g ≡
G
G0

, γ ≡
α

H2
0

I Equations in dimensionless parameters
dh
dz

=
(3− β)
(1 + z)

h −
γ(1 + z)

h
−

3
2

g
(1 + z)h

×(
Ωm0(1 + z)3 +

2Ωr0

3
(1 + z)4 + 2ΩΛ0

)
(2.6)

dg
dz

= β

(
Ωmo(1 + z)3 +

2Ωr0

3
(1 + z)4 + 2ΩΛ0

)
g

−
2β
3

(3− β)
h2

1 + z
−

2γ
3

(1− β)(1 + z) (2.7)

I The deceleration parameter is then

q = (2− β)−
γ(1 + z)2

h2

−
3
2

(
Ωm0(1 + z)3 +

2Ωr0

3
(1 + z)4 + 2ΩΛ0

) g
h2
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I Observational values used from Planck-2018 5

Ωm0 = 0.3111 , ΩΛ0 = 0.6889 , Ωr0 = 1−Ωm0−ΩΛ0 , H0 = 67.37km/s/Mpc

I Initial conditions used

h(0) = g(0) = 1 , β = 0.02

Λ vs z g vs z.

Variation of Λ and G with redshift

5Planck Collaboration: Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys 641, A6 (2020)
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Bianchi-V cosmology

I Here we consider the Bianchi type−V with spacetime metric of the form6

ds2 = dt2 − A2dx2 − e2mx [B2dy2 + C2dz2]

where m is constant
I We assume that the universe is filled by a viscous fluid whose distribution in

space is represented by the following energy momentum tensor:

Tij = (ρ+ p̄)ui uj + p̄gij−2ησij , p̄ = p− (3ξ − 2η) H

where η and ξ are coefficients of shear and bulk viscosity respectively, σij is the
shear and p̄ is the effective pressure

I Assume a linear equation of state

p = wρ , −1 ≤ w ≤ 1

I The shear tensor is given by

σij =
(

ui ;khk
j + u̇j;khk

i
)
−

1
3
θhij ,where hij ≡ gij + ui uj

6Tiwari, R.K., Alfedeel, A. H., Sofuoğlu, D., AA, Eltagani, I.H., & Shukla, B. H. (2022), A cosmological model
with time-dependent Λ, G, and viscous fluid in General Relativity, Front. Astron. Space Sci. 9 965652 (2022)
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I The ∇j Tij = 0 equation leads to the fluid continuity equation:

κG
[
ρ̇+ (p + ρ)

(
Ȧ
A

+
Ḃ
B

+
Ċ
C

)]
+ κρĠ + Λ̇− 4κGησ2 = 0

I Split this into the following two equations (total matter content conserved):

ρ̇+ 3H [p + ρ− (3ξ − 2η)H]− 4ησ2 = 0
κρĠ + Λ̇ = 0

I Meanwhile, the EFEs can be written in terms of H, σ and q as

κGp − Λ = H2(2q − 1)− σ2 +
m2

A2

κGρ+ Λ = 3H2 − σ2 −
3m2

A2

with

a ≡ (ABC)1/3 , H ≡
ȧ
a

=
1
3

(
Ȧ
A

+
Ḃ
B

+
Ċ
C

)
, q ≡ −

aä
ȧ2

σ2 ≡
1
6

[(
Ȧ
A
−

Ḃ
B

)2

+
(

Ḃ
B
−

Ċ
C

)2

+
(

Ċ
C
−

Ȧ
A

)2
]

I The generalized Raychaudhuri equation reads:

Ḣ + 3H2 −
2m2

a2
− Λ +

κG
2

(p − ρ)− κG
(3ξ

2
− η
)

H = 0
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The background solutions

I To find the solution by introducing extra information in the form of initial
conditions and a constraint, we consider the following form of the Friedmann
Equation:

1 = Ωm + ΩΛ + Ωσ + Ωχ
where the density parameters are defined as:

Ωm ≡
κGρm

3H2 , ΩΛ ≡
κGρΛ
3H2 , Ωσ ≡

σ2

3H2 , Ωχ ≡
K2

H2a2

I The current values of these dimensionless density parameters are given in terms
of the current values of the quantities that describe them, as

Ωm0 =
κG0ρm0

3H2
0

, ΩΛ0 =
κG0ρΛ0

3H2
0

, Ωσ0 =
σ20
3H2

0
, Ωχ0 =

K2

H2
0a20

I We also define the following dimensionless parameters:

h ≡
H
H0

, a =
1

(1 + z)
, ξ = αH0(ρm/ρm0)n , η = βH

with α, β and 0 ≤ n ≤ 1
2 introduced as dimensionless constants
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I We assume the ansatz, in accordance with Dirac’s hypothesis

G(t) = G0aδ

I Here, δ = −1/60 is a constant obtained from observational constraints7 8

I The conservation equations in terms of the dimensionless density parameters:

h′ =
h

(1 + z)

[
3− 2Ωχ − 3ΩΛ −

3
2

(1− wm)Ωm

]
−

κG0
(1 + z)1+δ

[
3α
2

(
h2Ωm(1 + z)δ

Ωm0

)n

− βh
]

Ω′m = −
2h′

h
Ωm +

1
1 + z

(−δ + 3 + 3wm) Ωm

−
κG0

(1 + z)1+δ

[
3α
h

(
h2Ωm(1 + z)δ

Ωm0

)n

− 2β + 4βΩσ

]
Ω′Λ = −

2h′

h
ΩΛ−

δ

1 + z
Ωm

Ω′χ = −
2h′

h
Ωχ +

2Ωχ
1 + z

,

Ω′σ = −
2h′

h
Ωσ +

6Ωσ
1 + z

7Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar laser ranging tests of the equivalence principle with the
earth and moon. Int. J. Mod. Phys. D 2009, 18, 1129–1175

8Copi, C.J.; Davis, A.N.; Krauss, L.M. New nucleosynthesis constraint on the variation of G. Phys. Rev. Lett.
2004, 92, 171301
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The variation of G for viscous Bianchi type-V cosmological model vs redshift

∼ 2.5% change in G in about 12 billion years!
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The variation of the density parameters for viscous Bianchi type-V cosmological model vs redshift.
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Evolution of the scalar perturbations

Evolution of the matter perturbations 9:

∆′ +
3

(1 + z)

{
w−

κG0
Ωmh(1 + z)δ

[
α

(
h2Ωm(1 + z)δ

Ωm0

)n

−
2β
3

h
]
−

4βκG0
3(1 + z)δ

Ωσ
Ωm

+
4βΩσ
3Ωm

κG0
(1 + z)δ

[ αn
(

h2Ωm(1+z)δ
Ωm0

)n
− whΩm
κG0(1+z)−δ

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]]}∆

−
1

h(1 + z)

{
1 + w−

κG0
Ωmh(1 + z)δ

[
α

(
h2Ωm(1 + z)δ

Ωm0

)n

−
2β
3

h
]
−

4βκG0
3(1 + z)δ

Ωσ
Ωm

+
4βΩσ
3Ωm

κG0
h(1 + z)δ

[ α

(
h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]]}Z

−
8βκG0

3h(1 + z)δ+1

√
3Ωσ
Ωm

S = 0 (2.8)

9AA, Alfedeel, A. H., Sofuoğlu, D., Eltagani, I.H., & Tiwari, R.K.. (2023), Perturbations in Bianchi - V
spacetimes with varying Λ, G and viscous fluids, Universe 9, 61
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Evolution of the perturbations. . .

Evolution of the perturbations in the expansion:

Z′ −
1

(1 + z) h

{
2h−

3
2

κG0

(1 + z)δ

[
α

(
h2Ωm(1 + z)δ

Ωm0

)n

−
4β
3

h
]

−
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)h2Ωm
κG0(1+z)−δ

− h
[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
] [−hh′(1 + z) +

2
3

h2Ωχ −
γ

3
(1 + z)2

]]}
Z

+
3

(1 + z)

[
Ωmh
2

(1 + 3w)−
3
2
αnκG0

(1 + z)δ

(
h2Ωm(1 + z)δ

Ωm0

)n

+
αn
(

h2Ωm(1+z)δ
Ωm0

)n
− whΩm
κG0(1+z)−δ

(1+w)h2Ωm
κG0(1+z)−δ

− h
{
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
} [−hh′(1 + z) +

2
3

h2Ωχ −
γ

3
(1 + z)2

]]
∆

−
4
√

Ωσ
(1 + z)

S = 0
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Evolution of the perturbations. . .

Evolution of the shear perturbations:

S′ −
3

(1 + z)
S −

√
3Ωσ

(1 + z)

1 +
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]
Z

−
3h
√
3Ωσ

(1 + z)

 αn
(

h2Ωm(1+z)δ
Ωm0

)n
− whΩm
κG0(1+z)−δ

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]
∆ = 0
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Solutions of the matter perturbations
I Fix the background expansion history
I Set initial conditions at some redshift zin, solve the system of perturbation

equations for ∆(z) and compare it with that of standard GR/ΛCDM

∆(zin) = 10−5 , Z(zin) = 10−5 , Σ(zin) = 10−5

I Let’s first define the normalized matter density contrast

δ(z) ≡
∆(z)

∆(zin)
(2.9)

with zin = 20 in both GR/ΛCDM and our current models
I We have also used the following dimensionless viscosity parameters:
α = 0.312, β = 1, n = 0.2, as well as the current values from PLANCK2018:

Ωm0 = 0.3111 , ΩΛ0 = 0.6889 , Ωχ0 = −0.0007 , Ωσ0 = 1−Ωm0−ΩΛ0−Ωχ0

I The following are some of the highlights of our observations:
X Increasing α decreases the late-time perturbation amplitude in the short-wavelength

regime, but this effect is reversed for z & 0.65
X Increasing α increases the perturbation amplitude in the long-wavelength regime
X Increasing β increases the perturbation amplitudes in both the short- and

long-wavelength regimes
X Increasing n increases the perturbation amplitudes in both the short- and

long-wavelength regimes
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Growth of matter density perturbations δ(z) vs z. Left: for ΛCDM and GR without Λ (Ωm = 1,
ΩΛ = 0); Right: for the Bianchi type-V model for non-viscous (α = 0 = β) fluid, but with
changing G and Λ
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Growth of matter density perturbations δ(z) vs z for the viscous Bianchi type-V cosmological
model. Left: for long-wavelength regimes; Right: for short-wavelength regimes
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Growth of matter density perturbations δ(z) vs z for the viscous Bianchi type-V cosmological
model. Left: for varying values of α; Right: for varying values of β

35 / 75



The variation of the matter density perturbations δ(z) for a viscous Bianchi type-V cosmological
model vs. redshift for γ = 50, α = 0.3, β = 1 and different values of n.
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Interacting dark-fluid models
I The EMT for perfect-fluid models is given by

Tµν = (ρ+ p)uµuν + pgµν

I The divergence-free EMT Tµν ;µ = 0 leads to the fluid conservation equation

Tµν
;µ = 0 =⇒ ρ̇+ 3

ȧ
a

(1 + w)ρ = 0

I In a multi-component fluid system, it is usually assumed that the energy density
of each perfect-fluid component is assumed to evolve independently of the other
fluids of the system:

ρ̇i + 3H(1 + w)ρi = 0

and in this case the EMT is the algebraic sum of the EMTS of each fluid, so are
the total energy density and total pressure terms the algebraic sums of the
individual components

I However, if we relax this assumption due to the presence of diffusion, the
individual components do not obey the matter conservation equation, but the
total fluid still does. For the the ith component fluid, the new conservation
equation reads:

Tµν
i ;µ = Nνi

where Nνi corresponds to the current of diffusion term for that fluid
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Background solution

I One can write the non-conservation equation for the fluid as 10:

ρ̇i + 3
ȧ
a

(1 + w)ρi =
γi
a3

where γi is a constant for that fluid such that
∑

i γi = 0
I Integrating the above equation gives

ρi = a−3(1+wi )
[
ρi0+γi

∫ t

t0

a3wi dt′
]

where ρi0 is the present-day (t = t0) value of the energy density of the ith fluid
I Using a late-time, i.e., t − t0 � t0, expansion and expressing

a(t) = a0 [1− (t0 − t)H0) + . . . ], we can write 11 the last term of the above
integrand as ∫ t

t0

a3wi dt =
∫ t

t0

a3wi [1− (t0 − t)H0) + . . . ]3wi dt′ (3.1)

10Maity, S., Bhandari, P., & Chakraborty, S. (2019). Universe consisting of diffusive dark fluids: thermodynamics
and stability analysis. The European Physical Journal C, 79(1), 1-8.

11RR Mekuria, AA (2023), Observational constraints of diffusive dark-fluid cosmology, preprint arXiv:2301.02913
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I Evaluating the previous integral and applying Taylor expansion around t0 yields∫ t

t0

a3wi dt = −
1

1 + 3wi

[
(1 + (t0 − t)H0)1+3wi − (1 + (t0 − t)H0)1+3wi + . . .

]
≈

1
1 + 3wi

[
1− (1 + (t0 − t)H0)1+3wi

]
=

1
(1 + 3wi )H0

[
1− (2− a)1+3wi

]
where in the last step, we have normalised the scale factor to unity today: a0 = 1

I The energy density of each diffusive fluid component is given according to the
below relation:

ρi = a−3(1+wi )
{
ρi0+

γi
(1 + 3wi )H0

[
1− (2− a)1+3wi

]}
I Assuming the well-known component of radiation, dust-like matter (baryons and

dark matter) and vacuum energy, the above diffusive solution leads to:

ρr = a−4
{
ρr0 +

γr

2H0

[
1− (2− a)2

]}
ρm = a−3

{
ρm0 +

γm

H0
[1− (2− a)]

}
ρΛ = ρΛ0 −

γΛ
2H0

[
1− (2− a)−2

]
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I Let us now consider the Friedmann equation for the ΛCDM model for k = 0:

ȧ2

a2
=

8πG
3

{
ρr0a−4 + ρm0a−3+

γm

H0
[1− (2− a)] a−3 + ρΛ0−

γΛ
2H0

[
1− (2− a)−2

]}
I We assume the diffusive interaction is limited between dark matter and dark

energy for now, i.e., γr = 0, and introduce the following dimensionless quantities:

Ωi ≡
8πG
3H2

0
ρi , ∆i ≡

8πG
3H3

0
γi , 1 + z ≡ a−1 , h ≡

H
H0

I We can then show that the Friedmann equation can be recast as

h2 = Ωr0(1+z)4+Ωm0(1+z)3+ΩΛ0−∆mz(1 + z)2 −∆Λ

[
1
2
−

1
2

(1 + 2z
1 + z

)−2]
I Moreover, defining the deceleration parameter as

q ≡ −
äa
ȧ2

=
4πG
3H2

∑
i

ρi(1 + 3wi)

we can show that for our current model, we have

q =
1
2

 2Ωr0(1 + z)4 + Ωm0(1 + z)3 − 2ΩΛ0−∆mz(1 + z)2 + ∆Λ

[
1−
(

1+2z
1+z

)−2
]

Ωr0(1 + z)4 + Ωm0(1 + z)3 + ΩΛ0−∆mz(1 + z)2 −∆Λ

[
1
2 −

1
2

(
1+2z
1+z

)−2
]

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Some constraints from data

Four diffusive cases of the model and their best-fitting parameter values.

Models h Ωm0 Ωr0 ∆m ∆Λ

Diffusive Case I 0.6966 0.2678 0.00050 0.00252 -0.00251

Diffusive Case II 0.6955 0.3134 0.00050 0.1246 -0.1244

ΛCDM 0.674 0.315 0.00050 0 0

Diffusive Case III 0.6967 0.2655 0.00050 -0.00251 0.00246

Diffusive Case IV 0.6976 0.2283 0.00050 -0.10747 0.10426
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The MCMC simulation results for Case I, with the “true” values for Ωm0 = 0.315, h̄ = 0.674, and
Ωr0 = 2.47× 10−5 /h̄2 provided by the Planck2018 data. 100 random walkers and 10000
iterations
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The MCMC simulation results for Case II, with the “true” values for Ωm0 = 0.315, h̄ = 0.674, and
Ωr0 = 2.47× 10−5 /h̄2 provided by the Planck2018 data. 100 random walkers and 10000
iterations.
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The Hubble parameter vs redshift for Case I.
The blue curve represent the result obtained by
considering diffusive fluid and employing
MCMC simulation, with 1-σ deviation result
displayed in yellowish shaded region. The red
curve represents ΛCDM cosmology result using
MCMC simulation where as the green curve
represent one obtained directly by using the
Planck 2018 data for the purpose of
comparison.

The Hubble parameter vs redshift for Case II.
The blue curve represent the result obtained by
considering diffusive fluid and employing MCMC
simulation, with 1-σ deviation result displayed
in yellowish shaded region. The red curve
represent ΛCDM cosmology result using MCMC
simulation where as the green curve represent
one obtained directly by using the Planck 2018
data for the purpose of comparison.
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The graph of deceleration parameter vs redshift
for Case I.

The graph of deceleration parameter vs redshift
for Case II.
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The MCMC simulation results for Case III, with the “true” values for Ωm0 = 0.315, h̄ = 0.674,
and Ωr0 = 2.47× 10−5 /h̄2 provided by the Planck2018 data. 100 random walkers and 10000
iterations. 46 / 75



The MCMC simulation results for Case IV, with the “true” values for Ωm0 = 0.315, h̄ = 0.674,
and Ωr0 = 2.47× 10−5 /h̄2 provided by the Planck2018 data. 100 random walkers and 10000
iterations. 47 / 75



The Hubble parameter vs redshift for Case III.
The blue curve represent the result obtained by
considering diffusive fluid and employing
MCMC simulation, with 1-σ deviation result
displayed in yellowish shaded region. The red
curve represents ΛCDM cosmology result using
MCMC simulation where as the green curve
represents one obtained directly by using the
Planck 2018 data for the purpose of
comparison.

The Hubble parameter vs redshift for Case IV.
The blue curve represents the result obtained
by considering diffusive fluid and employing
MCMC simulation, with 1-σ deviation result
displayed in yellowish shaded region. The red
curve represents ΛCDM cosmology result using
MCMC simulation where as the green curve
represent one obtained directly by using the
Planck 2018 data for the purpose of
comparison.
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The graph of deceleration parameter vs redshift
for Case III.

The graph of deceleration parameter vs redshift
for Case IV.
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Models ∆m ∆Λ χ2 Red.χ2 AIC |∆AIC| BIC |∆BIC|

Diffusive Case II +ve -ve 242.3355 0.6845 252.3355 4.9405 271.7521 12.7072

Diffusive Case I +ve -ve 241.4118 0.6819 251.4118 4.0168 270.8285 11.7835

ΛCDM 0 0 241.3950 0.6780 247.3950 0 259.0449 0

Diffusive Case III -ve +ve 241.3781 0.6818 251.3781 3.9831 270.7947 11.7497

Diffusive Case IV -ve +ve 240.7872 0.6801 250.7872 3.3922 270.2039 11.1589
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Some highlights

I They may be potential models to alleviate the cosmic coincidence problem by
stabilising the ratio of dark matter to dark energy in both the past and future

I These models also predict a wide range of the values for H0, thereby showing
potential as a candidate for relieving the Hubble tension

I Cases having positive values of ∆m were showing the largest values of likelihood
function. Based on the analysis of likelihood, goodness of fit, AIC and BIC
criteria, one can conclude that overall Case I is the most likely to be an
alternative to the ΛCDM model.

I Current work is to provide a viability test of the different cases considered, but to
reject or accept any of them more work is needed

I Future directions: putting more stringent constraints on the values of the defining
parameters of the model:
X With more rigorous data and statistical analysis – using existing and upcoming

cosmological data
X Studying large-scale structure power spectrum, ISW effects, and other methods
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More general interaction models
I For more general interactions

ρ̇dm + 3Hρdm = Q ; ρ̇de + 3Hρde(1 + ω) = −Q

where Q is the rate of energy exchange, which defines the direction of energy
flow between the dark sectors such that:

Q =

> 0 Dark Energy → Dark Matter
< 0 Dark Matter → Dark Energy
= 0 No interaction (ΛCDM case)

I Model 1: Q1 = δHρdm

ρdm = ρ(dm,0)a(δ−3)

ρde = ρ(de,0)a−3(1+ωde) + ρ(dm,0)
δ

δ + 3ω
[
a−3ω − aδ

]
a−3

I Model 2: Q2 = δHρde

ρdm = ρ(dm,0)a−3 + ρ(de,0)
δ

δ + 3ω
[
1− a−(δ+3ω)

]
a−3

ρde = ρ(de,0)a−(δ+3ω+3)
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The cosmic coincidence problem may now be addressed by considering how the ratio of
dark matter to dark energy r = (ρdm/ρde) evolves with redshift z. Here it can clearly
be seen that for the ΛCDM case, the current value of r0 ≈

(
3
7

)
seems fine tuned and

coincidental in comparison to Q1 and Q2, where r converges and becomes constant in
the past and the future respectively. Thus, alleviating the cosmic coincidence problem

Cosmic Coincidence Problem

53 / 75



Messing with Gravity

I GR incomplete? Einstein generalized Newton’s theory, and Newton modified
earlier theories (such as Aristotle’s), maybe it’s time to rethink GR’s unique
status...
X Theories of Gravity with Extra Fields

• Scalar-Tensor theories, e.g., Brans-Dicke theories
• Einstein-Æther theories, e.g., MOND
• Bimetric theories
• Tensor-Vector-Scalar theories (TeVeS)

X Higher-dimensional Theories of Gravity
• Kaluza-Klein (KK) theories
• Braneworld models
• Randall-Sundrum (RS) models
• Dvali-Gabadadze-Porrati (DGP) gravity
• (Einstein)Gauß-Bonnet (GB) gravity

X Higher-derivative Theories of Gravity
• Theories with Ricci and Riemann curvatures in the action
• Hořava-Lifshitz gravity
• Galileons
• f (R) theories: fourth-order theories. Come with far richer solutions

than GR.
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Some alternative gravity models. [Credit: Tessa Baker, arXiv 1512.05356]
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f (R) gravitation

I Einstein-Hilbert action for ΛCDM cosmology:

AGR =
1
2

∫
d4x
√
−g [R + 2 (Lm − Λ)]

X Corresponding Einstein’s field equations:

Gab + Λgab = Tab

I f (R) models are a sub-class of fourth-order theories of gravitation, with an action
of the form

Af (R) =
1
2

∫
d4x
√
−g [f (R) + 2Lm]

X Corresponding f (R)-generalized Einstein field equations:

f ′Gab = T m
ab + 1

2 (f − Rf ′)gab +∇b∇af ′ − gab∇c∇c f ′

X Because of the highest order of the derivatives in these field equations, f (R) is a
fourth-order theory of gravity
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Field equations

I Simplest generalizations to GR
I An extra degree of freedom
I Cosmological viability:

X Observational constraints
X Theoretical constraints: integrability of the field equations

I Generic viability conditions on f :
X To ensure gravity remains attractive

f ′ > 0 ∀R

X For stable matter-dominated and high-curvature cosmological regimes (nontachyonic
scalaron)

f ′′ > 0 ∀R � f ′′

X GR-like law of gravitation in the early universe (BBN, CMB constraints)

lim
R→∞

f (R)
R

= 1⇒ f ′ < 1

X At recent epochs
|f ′ − 1| � 1
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Covariant thermodynamics

The matter-energy content of the Universe is specified by

Tab = (µ+ p)uaub + pgab + q(aub) + πab

I Curvature and total fluid thermodynamics

µR =
1
f ′

[1
2

(Rf ′ − f )−Θf ′′Ṙ + f ′′∇̃2R
]

pR =
1
f ′

[1
2

(f − Rf ′) + f ′′R̈ + f ′′′Ṙ2

+
2
3
(

Θf ′′Ṙ − f ′′∇̃2R − f ′′′∇̃aR∇̃aR
)]

qR
a = −

1
f ′

[
f ′′′Ṙ∇̃aR + f ′′∇̃aṘ −

1
3

f ′′Θ∇̃aR
]

πR
ab =

1
f ′
[
f ′′∇̃〈a∇̃b〉R + f ′′′∇̃〈aR∇̃b〉R − σabṘf ′′

]
µ ≡

µm

f ′
+µR , p ≡

pm

f ′
+pR , qa ≡

qm
a

f ′
+qR

a , πab ≡
πm

ab
f ′

+πR
ab
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I The covariant derivative of the timelike vector ua ≡ dxa

dτ is decomposed into its
irreducible parts as

∇aub = −Aaub + 1
3habΘ + σab + εabcω

c

Aa ≡ u̇a , Θ ≡ ∇̃aua , σab ≡ ∇̃〈aub〉 , ωa ≡ εabc∇̃buc

I The trace-free part of the Riemann tensor defines the Weyl conformal curvature
tensor

Cab
cd = Rab

cd − 2g [a
[cRb]

d] +
R
3

g [a
[cgb]

d]

X Split into its symmetric, trace-free “electric” and “magnetic” parts, Eab and Hab
respectively given by

Eab ≡ Cagbhug uh
, Hab ≡ 1

2ηae
ghCghbd ueud

X Eab represents the free gravitational field (tidal forces)
X Hab is responsible for gravitational waves, no Newtonian analogue
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Evolution equations

I 1 + 3 covariant splitting of the Bianchi and Ricci identities

∇[aRbc]d
e = 0 , (∇a∇b −∇b∇a)uc = Rabc

d ud

result in propagation and constraint equations
I The evolution equations uniquely determine the covariant variables on some

initial hypersurface S0 at t0:

µ̇m = −(µm + pm)Θ− ∇̃aqm
a − 2Aaqa

m − σa
bπ

b
a(m) (4.1)

µ̇R = −(µR + pR )Θ +
µmf ′′

f ′2
Ṙ − ∇̃aqR

a − 2Aaqa
R − σ

a
bπ

b
a(R) (4.2)

Θ̇ = − 1
3Θ2 − 1

2 (µ+ 3p) + ∇̃aAa − AaAa − σabσ
ab + 2ωaω

a

q̇m
a = − 4

3Θqm
a − (µm + pm)Aa − ∇̃apm − ∇̃bπm

ab

− σb
a qm

b − Abπm
ab − εabcω

bqc
m

(4.3)
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Evolution equations. . .

q̇R
a = − 4

3 ΘqR
a +

µmf ′′

f ′2
∇̃aR − ∇̃apR − ∇̃b

π
R
ab − σ

b
a qR

b

− (µR + pR )Aa − Ab
π

R
ab − εabcω

bqc
R

ω̇a = − 2
3 Θωa − 1

2 εabc∇̃bAc + σ
b
aωb (4.4)

σ̇ab = − 2
3 Θσab − Eab + 1

2πab + ∇̃〈aAb〉 + A〈aAb〉 − σ
c
〈aσb〉c

− ω〈aωb〉 (4.5)

Ėab + 1
2 π̇ab = εcd〈a∇̃

c Hd
b〉 − Θ

(
Eab + 1

6πab
)
− 1

2 (µ + p)σab − 1
2 ∇̃〈aqb〉

+ 3σ〈ca

(
Eb〉c − 1

6πb〉c

)
− A〈aqb〉 + εcd〈a

[
2Ac Hd

b〉 + ω
c (Ed

b〉 + 1
2π

d
b〉)
]

(4.6)

Ḣab = −ΘHab − εcd〈a∇̃
c Ed

b〉 + 1
2 εcd〈a∇̃

c
π

d
b〉 + 3σ〈ca Hb〉c

+ 3
2ω〈aqb〉 − εcd〈a

[
2Ac Ed

b〉 − 1
2σ

c
b〉q

d − ωc Hd
b〉

]
(4.7)
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Constraints

I Restrict the initial data to be specified; must remain satisfied on any hypersurface
St for all t:

(C1)a := ∇̃bσab − 2
3 ∇̃aΘ + εabc

(
∇̃bωc + 2Abωc

)
+ qa = 0

(C2)ab := εcd(a∇̃cσb)
d + ∇̃〈aωb〉 − Hab − 2A〈aωb〉 = 0 (4.8)

(C3)a := ∇̃bHab + (µ+ p)ωa + 3ωb
(

E ab − 1
6π

ab
)

+ εabc
[
1
2 ∇̃

bqc + σbd
(

Ed
c + 1

2π
d

c
)]

= 0

(C4)a := ∇̃bEab + 1
2 ∇̃

bπab − 1
3 ∇̃aµ+ 1

3Θqa

− 1
2σ

b
a qb − 3ωbHab − εabc [σbd Hc

d −
3
2ω

bqc ] = 0

(C5) := ∇̃aωa − Aaω
a = 0 (4.9)
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Rotating and expanding universes

Classic GR result (Gödel, Ellis): shear-free perfect-fluid cosmological models
(homogeneous, inhomogeneous) cannot rotate and expand simultaneously, i.e.,

Θωa = 0

I Turning off the shear from the propagation equations (4.5) results in a new
constraint equation 12

(C6)ab := Eab − 1
2πab − ∇̃〈aAb〉 = 0

I Demanding consistent spatial (curl) and temporal (time derivative) propagations
results in

Θωa
{[ (1− w)P

3
R̃ +

(1 + w)
f ′

(3w + 5)f ′ + 4f ′′Q
6f ′

ρm

]
+

Z
P

[
(
1 + w

f ′
)ρm

]}
= 0

12AA, Goswami, Dunsby. Phys. Rev. D 84 124027 (2011)
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Some solutions

I Flat, vacuum solutions: if the 3-curvature R̃ vanishes, then the GR result can
always be avoided for vacuum universes (µm = 0), i.e., a shear-free, spatially flat
vacuum universe in any f (R) theory can rotate and expand simultaneously in the
linearized regime

I Non-vacuum case solutions: for a stiff fluid in R3 gravity, there exists a flat
Milne-universe solution which can rotate and expand simultaneously at the level
of linearised perturbation theory
X This suggests that there are situations where linearized fourth-order gravity shares

properties with Newtonian theory not valid in GR
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Classes of non-rotating fluid models

I Fluid flows with vanishing vorticity ωa = 0 will have the evolution equation (4.4)
turned into a new constraint

(C6∗)a := εabc∇̃bAc = 0 =⇒ Aa = ∇̃aψ

for some scalar ψ
I Specializing to dust models

w = 0 = pm , qm
a = 0 = Aa , πm

ab = 0 ,

we observe that irrotational shear-free dust spacetimes governed by f (R)
gravitational physics evolve consistently if 13[

3
2

(
f ′′′

f ′
−

f ′′2

f ′2

)
Ṙ −

Θf ′′

6f ′

]
εcda∇̃c∇̃〈b∇̃

d〉R + 3f ′′
2f ′ εcda∇̃c∇̃〈b∇̃

d〉Ṙ = 0

which is an identity
X This suggests that all irrotational shear-free dust spacetimes in f (R)-gravity are

self-consistent

13AA, Elmardi. Int. J. Geom. Meth. Mod. Phys. 12 1550118 (2015)
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Irrotational dust spacetimes with divHab = 0

A necessary condition for the propagation of gravitational waves is the vanishing of
the divergence of a non-zero Hab

I Prescribing this condition on the field equations results in a constraint:

qR
a = ∇̃aφ = 2

3 ∇̃aΘ− ∇̃bσab

I A subclass of such models, called “purely radiative” dust spacetimes, is a
divergence-free Eab . Such models in f (R) gravity are constrained further as

∇̃aµm + f ′∇̃aµR + f ′ΘqR
a − 3f ′

2 ∇̃
bπR

ab = 0

X In GR purely radiative irrotational dust spacetimes are spatially homogeneous:

∇̃aµm = 0

66 / 75



Quasi-Newtonian universes

I Quasi-Newtonian universes: irrotational dust universes with purely gravito-electric
Weyl tensor, characterized by:

pm = 0 , Aa = 0 , qm
a = µmva , πm

ab = 0 , ωa = 0 , Hab = 0

X Potential models for the description of gravitational collapse and late-time cosmic
structure

I Choose a comoving 4-velocity ũa such that

ũa = ua + va , vaua = 0 , vava << 1 ,

where va is the non-relativistic (“peculiar”) velocity and vanishes in the
background
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For this class of models, it can ne shown that

1
2
εabc∇̃bAc = 0 =⇒ Aa ≡ ∇̃aΦ

Eab −
1
2
πab − ∇̃〈aAb〉 = 0

For any fourth-order gravity model in which the anisotropic pressure πab can be given
in terms of a scalar potential Ψ as

πab = ∇̃〈a∇̃b〉Ψ

I Two generally independent integrability conditions for generic fluid models exist
14:

∇̃<a∇̃b>

(
Φ̇ +

1
3

Θ + Ψ̇
)

+
(
Φ̇ +

1
3

Θ + Ψ̇
)
∇̃<a∇̃b>Φ = 0

6∇̃aΦ̈ + 6Θ∇̃aΦ̇−
(
2µ−

2
3

Θ2
)
∇̃aΦ + 6∇̃aΨ̈ + 6Θ∇̃aΨ̇

−
(
2µ−

2
3

Θ2
)
∇̃aΨ− 2∇̃a(∇̃2Ψ)− 3∇̃ap = 0

I Identically the same in f (R) models, due to the linearized form of πR
ab

14AA, Dunsby, Solomons. Int. J. Mod. Phys. D 26 1750054 (2016)
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I Modified Poisson equation

∇̃2Φ =
1
2

(µ+ 3p)−
[
3
(
Φ̈+ Ψ̈

)
+
(
Φ̇+ Ψ̇

)
Θ
]

I Velocity perturbations are scale-independent, as in GR, but matter density
fluctuations are scale-dependent

I Over regions of space-time where the Ricci curvature scalar is a slowly varying
function of space and time
X f (R) (and its derivatives) are associated Laguerre polynomials
X The peculiar velocity, 4-acceleration, total cosmic heat flux and anisotropic stress can

be analytically calculated explicitly
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Anti-Newtonian universes

I Irrotational dust universes with purely gravito-magnetic Weyl tensor −→
anti-Newtonian universes, characterized by

pm = 0 , Aa = 0 , qm
a = 0 , πm

ab = 0 , ωa = 0 , Eab = 0

X Farthest possible models from Newtonian universes

I In GR, anti-Newtonian universes suffer from severe integrability conditions, no
known anti-Newtonian spacetimes that are linearized perturbations of
Friedman-Lemaître-Robertson-Walker (FLRW) universes

I In fourth-order gravitational theories, anti-Newtonian models exist, subject to the
integrability condition 15

∇̃2qR
a − ∇̃a(∇̃bqR

b ) + R̃qR
a +

4f ′′

f ′2
µmΘ∇̃aR = 0

15AA. Class. Quantum Grav. 31 115011 (2014)
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I For flat universes (K = 0 = R̃) this holds only if

f ′′µmΘ∇̃aR = 0

X Impose µm 6= 0 and f ′′ 6= 0. For a consistently evolving set of constraints in the flat,
anti-Newtonian spacetimes, either one of the following conditions must hold:

Θ = 0 −→ static
∇̃aR = 0 −→ homogeneous

I Closed & open universes (K = ±1): any dust solution of[ f ′′µmΘ
f ′

∓
2
a2
(

Ṙf ′′′ − 1
3Θf ′′

)]
∇̃aR ∓

2f ′′

a2
∇̃aṘ = 0

with f ′′ 6= 0 is an anti-Newtonian solution

71 / 75



Chaplygin gas cosmology

I The Chaplygin gas is a dark-fluid model whose EoS

p = −
A
µα

where A and α are positive constants, allows for a solution of the form:

µ(a) =
[

A +
B

a3(1+α)

] 1
1+α

X Early universe: µ ∼ a−3, behaves as dust (dark matter and baryonic matter)
X Late universe: µ ∼ A

1
1+α , behaves like dark energy

I Does the CG allow the simultaneous expansion and rotation of a shear-free
universe?
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I For a consistent propagation of the field equations in this model with α = 1 (the
original CG model)16:{

6µ5
(
µ+ 4Θ2

)
+ 3A2

(
6µ2 −

3
2

R̃2
)

+Aµ2
[
R̃
(
3µ+ Θ2

)
− 24µ

(
µ+ Θ2

)]}
ωa

−3A
[
9A
(
µ−Θ2

)
− µ2

(
3µ− 5Θ2

)]
∇̃2ωa = 0 (5.1)

I This equation automatically reduces to the well-known shear-free dust result for
the case A = 0:

ωa(µ+ 4Θ2) = 0
I Using ∇̃2ωa = −λωa yields[

6µ5(µ+ 4Θ2) + 3A2(6µ2 −
3
2

R̃2)

+Aµ2
(

R̃(3µ+ Θ2)− 24µ(µ+ Θ2)
)

+3Aλ
(
9A(µ−Θ2)− µ2(3µ− 5Θ2)

)]
ωa = 0

16AA., Al Ajmi, M., Elmardi, M., Nandan, H. & Sabah, N. Shear-free conditions of a Chaplygin-gas-dominated
universe. Int. J. Geom. Methods Mod. Phys. 2150192 (2021)
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Thus, any simultaneously expanding and rotating solution must satisfy (provided Θ
remains real-valued):

Θ = ±

√
A2
(
9R̃2/2− 18µ2 − 27λµ

)
− 3Aµ3

(
R̃ − 8µ− 3λ

)
− 6µ6

A
(

R̃µ2 − 24µ3 + 15λµ2 − 27Aλ
)

+ 24µ5

Some special cases for which simultaneously expanding and rotating solutions can
exist.
I For flat space, R̃ = 0 , λ 6= 0

Θ = ±

√
µ (µ2 − 3A) [2µ3 − A(2µ+ 3λ)]
A [9Aλ+ µ2(8µ− 5λ)]− 8µ5

provided that the denominator is nonzero, i.e.,

A 6=
5λµ2 − 8µ3 ± µ2

√
25λ2 + 208λµ+ 64µ2

18λ

X Θ2 = 0 for only A = {µ2/3 , 2µ3/(2µ + 3λ)}, it means that Eq. (5.1) can be satisfied
for non-vanishing ωa and Θ provided A 6= {µ2/3 , 2µ3/(2µ + 3λ)}

I For flat space, λ = 0 and A 6= {µ2, µ2/3} =⇒ we can have non-vanishing Θ and
ωa provided

Θ = ±

√
3A− µ2

4µ
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Summary

I Cosmology has a long history of tensions
I Potential solutions to solve - or at least alleviate - these tensions might lie

somewhere beyond the standard cosmological model based on:
X General Relativity
X the Copernican (Cosmological) Principle
X Noninteracting cosmological medium
X Perfect fluids

I Relaxing these comes at a cost of more complexity, but it might be worth the
extra effort
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