

H2020 MSCA COFUND GA 754496

INFN. Turin section Turin (IT)

Istituto Nazionale di Fisica Nucleare

gariazzo@to.infn.it

http://personalpages.to.infn.it/~gariazzo/

Introduction on neutrino oscillations

Applications of Quantum Information in Astrophysics and Cosmology, Cape Town (ZA), 25/04/2023

Neutrinos

Neutrino oscillations in vacuum

Neutrino oscillations in matter

Phenomenology of neutrino oscillations

Status of three-neutrino parameters

Measurements of neutrino masses

Additional neutrinos

Based on:

https://

neutrino-history. in2p3.fr/

The Standard Model of Particle Physics

The Standard Model of Particle Physics

Neutrino proposal and discovery

Milestones in neutrino history: see https://neutrino-history.in2p3.fr/ Bequerel [1][2] discovery of radioactivity 1896 Ellis [1] β decay spectrum ($n \rightarrow pe^{-1}$) is continuous 1927 Bohr will desperately propose that energy is conserved "in the mean" 1930 (Pauli [1] proposal of new neutral particle, small mass Chadwick [1] 1932 neutron discovery, too heavy to be it Fermi [1][2][3] name "neutrino" as lighter than neutron 1933 (1937 Majorana [1] neutrino is its own antiparticle? proposal of experiment for detecting neutrinos 1948 Pontecorvo [1] 1956 Reines&Cowan [1] first experimental evidence of neutrinos ~ 25 years from proposal to discovery, \sim 40 years from discovery to Nobel prize

History of neutrino oscillations

After ν discovery: see https://neutrino-history.in2p3.fr/

1957	Pontecorvo [1]	first proposal of	neutrino oscillations $(u-ar{ u})$
1959	Pontecorvo [1], Schwa	rtz [1] existe	nce of second $ u$ family?
1962	Maki-Nakagawa-Sak	kata [1] flavor	mixing of neutrinos
1962	Lederman, Schwartz,	Steinberger [1]	discovery of muon ν
1964	Bahcall [1], Davis [1]	First prediction	on for solar $ u$
1968	Davis [1]	First observation	of solar ν , 1st deficit
1985	Mikheyev, Smirnov [1]	[2], Wolfenstein [1] MSW effect
1987	Kamiokande [1], IMB	[1], Baksan [1]	Supernova neutrinos
1989	LEP [1][2][3]	There are only 3	neutrino families
1998	SuperKamiokande [1]	Atmospheric ν	$ u_{\mu} - u_{ au}$ oscillations
2001	SNO [1]	Solar deficit expl	ained by MSW+oscillations

Masses in the Standard Model

[masses from PDG 2020]

Neutrino spectrum

neutrinos at all energies provide valuable information!

V Neutrino oscillations in vacuum Short theoretical introduction

Based on:

Giunti&Kim book "Fundamentals of Neutrino Physics and Astrophysics" (2007)

Two neutrino bases

Oscillation probability between source and detector?

$$P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E, U_{\alpha k}, m_j^2 - m_i^2)$$

S. Gariazzo

Neutrino oscillations in vacuum

Interaction Lagrangian: $\mathcal{L}_{CC} \sim W_{\rho} \left(\bar{\nu}_{eL} \gamma^{\rho} e_L + \bar{\nu}_{\mu L} \gamma^{\rho} \mu_L + \bar{\nu}_{\tau L} \gamma^{\rho} \tau_L \right)$ Fields $\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \Rightarrow \text{ states } |\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle, \ |\nu_{k}\rangle = \sum_{\alpha} U_{\beta k} |\nu_{\beta}\rangle$ $|
u_k(t,x)
angle = e^{-iE_kt+ip_kx}|
u_k
angle \quad \Rightarrow \quad |
u_{lpha}(t,x)
angle = \sum_{\nu} U^*_{lpha k} e^{-iE_kt+ip_kx}|
u_k
angle$ Combining, we get $|\nu_{\alpha}(t,x)\rangle = \sum_{\beta=e,\mu,\tau} \left(\sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k}x} U_{\beta k} \right) |\nu_{\beta}\rangle \equiv \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t,x) \equiv \mathcal{A}_{\alpha\beta}$ $\mathcal{A}_{\alpha\beta}(0,0) = \sum_{k} U^{*}_{\alpha k} U_{\beta k} = \delta_{\alpha\beta}$ $\mathcal{A}_{\alpha\beta}(t>0,x>0)\neq\delta_{\alpha\beta}$

Neutrino oscillations in vacuum

Interaction Lagrangian: $\mathcal{L}_{CC} \sim W_{\rho} \left(\bar{\nu}_{eL} \gamma^{\rho} e_L + \bar{\nu}_{\mu L} \gamma^{\rho} \mu_L + \bar{\nu}_{\tau L} \gamma^{\rho} \tau_L \right)$ Fields $\nu_{\alpha L} = \sum_{k} U_{\alpha k} \nu_{kL} \Rightarrow \text{ states } |\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle, \ |\nu_{k}\rangle = \sum_{\alpha} U_{\beta k} |\nu_{\beta}\rangle$ $|
u_k(t,x)
angle = e^{-iE_kt+ip_kx}|
u_k
angle \quad \Rightarrow \quad |
u_{lpha}(t,x)
angle = \sum_{k} U^*_{lpha k} e^{-iE_kt+ip_kx}|
u_k
angle$ $\begin{array}{l}
\nu_{k}(t,x)\rangle = e \\
\text{Combining, we get } |\nu_{\alpha}(t,x)\rangle = \sum_{\beta=e,\mu,\tau} \left(\sum_{k} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k} \times} U_{\beta k}\right) |\nu_{\beta}\rangle \\
\equiv \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(t,x) \equiv \mathcal{A}_{\alpha\beta}
\end{array}$ $P_{\nu_{\alpha} \to \nu_{\beta}}(t, x) = P_{\alpha\beta} = \left| \mathcal{A}_{\alpha\beta} \right|^{2} = \left| \sum_{\nu} U_{\alpha k}^{*} e^{-iE_{k}t + ip_{k} \times} U_{\beta k} \right|^{2}$

ultra-relativistic neutrinos: $t \simeq x = L$ (c = 1)

$$E_k t - p_k x \simeq (E_k - p_k)L = \frac{E_k^2 - p_k^2}{E_k + p_k}L \simeq \frac{m_k^2}{2E}L \qquad \qquad \Delta m_{kj}^2 = m_k^2 - m_j^2$$

Two-neutrino oscillations

$$\begin{array}{cccc}
|\nu_{\alpha}\rangle &= \cos\theta |\nu_{k}\rangle + \sin\theta |\nu_{j}\rangle \\
|\nu_{\beta}\rangle &= -\sin\theta |\nu_{k}\rangle + \cos\theta |\nu_{j}\rangle \\
U &= \begin{pmatrix} c_{\theta} & s_{\theta} \\ -s_{\theta} & c_{\theta} \end{pmatrix} & c_{\theta} \equiv \sin\theta \\
\Delta m^{2} = m_{k}^{2} - m_{j}^{2}
\end{array}$$

Transition probability: $P_{\alpha\beta}(L, E) = P_{\beta\alpha}(L, E) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$

11.

Survival probability: $P_{\alpha\alpha}(L, E) = P_{\beta\beta}(L, E) = 1 - P_{\alpha\beta}(L, E)$ (disappearance)

Measuring oscillations with finite energy resolution

$$P_{\alpha\beta}(L,E) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) = \frac{1}{2} \sin^2 2\theta \left[1 - \cos\left(\frac{\Delta m^2 L}{2E}\right)\right]$$
$$\langle P_{\alpha\beta}(L,E) \rangle = \frac{1}{2} \sin^2 2\theta \left[1 - \int \cos\left(\frac{\Delta m^2 L}{2E}\right) \phi(E) dE\right]$$

 $\Delta m^2 = 10^{-3} \text{ eV}^2$, $\sin^2 2\theta = 0.8 \ \phi(E)$ Gaussian distribution

The three-neutrino mixing matrix

U can be parameterized using 3 angles $(\theta_{12}, \theta_{13}, \theta_{23})$ and max 3 (1 Dirac δ , 2 Majorana [\exists only for Majorana ν]) phases

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} M$$
mainly atmospheric mainly LBL reactors and and LBL LBL accelerator Acce

Majorana phases irrelevant for oscillation experiments -Relevant for example in neutrinoless double-beta decay

$$s_{ij} \equiv \sin \theta_{ij}; \ c_{ij} \equiv \cos \theta_{ij}$$

LBL = long baseline; VLBL = very long baseline;

S. Gariazzo

"Introduction on neutrino oscillations"

Neutrinos and antineutrinos

Right-Handed antineutrinos are described by CP-conjugated fields:

$$\nu_{\alpha L}^{CP} = \gamma^{0} C \overline{\nu_{\alpha L}}^{T}$$
C: Particle \leftrightarrows Antiparticle
P: Left-Handed \leftrightarrows Right-Handed $\stackrel{\bullet}{\longrightarrow}$ R

Neutrinos and antineutrinos

S.

Right-Handed antineutrinos are described by CP-conjugated fields:

M Neutrino oscillations in matter

Based on:

Giunti&Kim book "Fundamentals of Neutrino Physics and Astrophysics" (2007)

Flavor oscillations in matter

coherent interactions with medium: forward elastic CC and NC scattering V_{e} $V_{CC} = \sqrt{2}G_{F}N_{e}$ V_{W} no μ , τ in medium V_{e} ν_{μ} , ν_{τ} ν_{e} , ν_{μ} , ν_{τ} V_{NC} V_{NC} V_{NC} V_{NC} V_{NC} V_{NC} V_{NC}

 $V_{\rm NC}$ irrelevant for 3ν flavor oscillations (diagonal contribution in flavor) antineutrinos: change sign, so that $\bar{V}_{\rm CC} = -V_{\rm CC}$ and $\bar{V}_{\rm NC} = -V_{\rm NC}$

Flavor oscillations in matter

coherent interactions with medium: forward elastic CC and NC scattering

Flavor evolution determined by Hamiltonian $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I$ $\mathcal{H}_0 | \nu_k(p) \rangle = E_k | \nu_k(p) \rangle$ while $\mathcal{H}_I | \nu_\alpha(p) \rangle = V_\alpha | \nu_\alpha(p) \rangle$

flavor superposition at t > 0: $|\nu(p, t)\rangle = \sum_{\beta} \varphi_{\beta}(p, t) |\nu_{\beta}(p)\rangle$ $P_{\nu_{\alpha} \to \nu_{\beta}} = |\varphi_{\beta}|^{2} = |\psi_{\beta}|^{2}$

states: $i \frac{d}{dt} |\nu(p, t)\rangle = \mathcal{H} |\nu(p, t)\rangle$ amplitudes: $\psi_{\beta}(p, t) = e^{iC} \varphi_{\beta}(p, t)$

$$\begin{aligned}
\underbrace{i\frac{d}{dx}\Psi_{\alpha} = \frac{1}{2E}\left(U\mathbb{M}^{2}U^{\dagger} + \mathbb{A}\right)\Psi_{\alpha}}_{\psi_{\alpha}} &\longrightarrow A_{\rm CC} = 2EV_{\rm CC} \\
\Psi_{\alpha} = \begin{pmatrix}\psi_{e}\\\psi_{\mu}\\\psi_{\tau}\end{pmatrix} &\mathbb{M}^{2} = \begin{pmatrix}m_{1}^{2} & 0 & 0\\ 0 & m_{2}^{2} & 0\\ 0 & 0 & m_{3}^{2}\end{pmatrix} &\mathbb{A} = \begin{pmatrix}A_{\rm CC} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}
\end{aligned}$$

 $\mathbb{M}^2_{\text{vacuum}} = U\mathbb{M}^2 U^{\dagger} \xrightarrow{\text{matter}} U\mathbb{M}^2 U^{\dagger} + 2E\mathbb{V} = \mathbb{M}^2_{\text{matter}}$

Two-neutrino mixing in matter

Consider $\nu_e \rightarrow \nu_\mu$ transitions, $U = (\cos \theta \sin \theta; -\sin \theta \cos \theta)$ $U\mathbb{M}^2 U^{\dagger} = \frac{1}{2} \Sigma m^2 + \frac{1}{2} \begin{pmatrix} -\Delta m^2 \cos 2\theta & \Delta m^2 \sin 2\theta \\ \Delta m^2 \sin 2\theta & \Delta m^2 \cos 2\theta \end{pmatrix}$ $\left| i \frac{d}{dx} \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} = \frac{1}{4E} \begin{pmatrix} -\Delta m^2 \cos 2\theta + 2A_{\rm CC} & \Delta m^2 \sin 2\theta \\ \Delta m^2 \sin 2\theta & \Delta m^2 \cos 2\theta \end{pmatrix} \begin{pmatrix} \psi_e \\ \psi_\mu \end{pmatrix} \right|$ initial ν_e : $(\psi_e, \psi_\mu)(0) = (1, 0) \Rightarrow \frac{P_{e\mu}(x)}{P_{ee}(x)} = \frac{|\psi_\mu(x)|^2}{|\psi_e(x)|^2} = 1 - \frac{P_{e\mu}(x)}{|\psi_e(x)|^2} = 1 - \frac{P_{e\mu}(x)}{|\psi_e(x)|^2}$ Constant matter density: $dA_{\rm CC}/dx = 0$ $\left| P_{e\mu} = \sin^2 2\theta_{\rm M} \sin^2 \left(\frac{\Delta m_{\rm M}^2 x}{4E} \right) \right|$ $\tan 2\theta_{\rm M} = \tan 2\theta / \left(1 - \frac{A_{\rm CC}}{\Delta m^2 \cos 2\theta}\right)$ $\Delta m_{\rm M}^2 = \sqrt{(\Delta m^2 \cos 2\theta - A_{\rm CC})^2 + (\Delta m^2 \sin 2\theta)^2}$ resonance $(\theta_{\rm M} = \pi/4)$: $\Delta m^2 \cos 2\theta = A_{\rm CC}^{\rm R} \longrightarrow N_e^{\rm R} = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}FG_{\rm R}}$

Resonant transitions (MSW effect)

[Wolfenstein 1978] [Mikheev, Smirnov, 1986]

14/51

What if the matter density is not constant?

if $N_e > N_e^{\text{R}}$, ν_e is produced as ν_2 , while in vacuum it would be ν_1 ! this happens for example in the Sun (adiabatic crossing of the resonance) S. Gariazzo "Introduction on neutrino oscillations" AQIAC 2023, 25/04/2023

P Phenomenology of neutrino oscillations Using different neutrino sources

Based on:

- Giunti&Kim book "Fundamentals of Neutrino Physics and Astrophysics" (2007)
- SuperKamiokande
- SNO

Atmospheric neutrinos

Produced in showers when cosmic rays hit the atmosphere

expected ratio of μ vs e (anti)neutrinos: $\frac{N(\nu_{\mu} + \bar{\nu}_{\mu})}{N(\nu_{e} + \bar{\nu}_{e})} \simeq 2 \text{ at } E \lesssim 1 \text{ GeV}$

uncertainty on ratios (\sim 5%) smaller than uncertainty on fluxes (\sim 30%)

better to measure ratios!

$$R \equiv \frac{[N(\nu_{\mu} + \bar{\nu}_{\mu})/N(\nu_{e} + \bar{\nu}_{e})]_{\text{data}}}{[N(\nu_{\mu} + \bar{\nu}_{\mu})/N(\nu_{e} + \bar{\nu}_{e})]_{\text{MC}}}$$

 $\begin{array}{rcl} R_{E<1~{\rm GeV}}^{K} \ = \ 0.60 \pm 0.07 \pm 0.05 \\ [{\rm Kamiokande,~PLB~280~(1992)}] \end{array}$

neutrinos are missing!

S. Gariazzo

Atmospheric neutrinos

Produced in showers when cosmic rays hit the atmosphere

R

"Introduction on neutrino oscillations"

expected ratio of μ vs e (anti)neutrinos: $rac{N(
u_{\mu}+ar{
u}_{\mu})}{N(
u_{e}+ar{
u}_{e})}\simeq 2 ext{ at } E \ \lesssim \ 1 ext{ GeV}$

uncertainty on ratios ($\sim 5\%$) smaller than uncertainty on fluxes ($\sim 30\%$)

better to measure ratios!

$$\equiv \frac{[N(\nu_{\mu} + \bar{\nu}_{\mu})/N(\nu_{e} + \bar{\nu}_{e})]_{\text{data}}}{[N(\nu_{\mu} + \bar{\nu}_{\mu})/N(\nu_{e} + \bar{\nu}_{e})]_{\text{MC}}}$$

 $R_{E<1 \text{ GeV}}^{K} = 0.60 \pm 0.07 \pm 0.05$ [Kamiokande, PLB 280 (1992)]

neutrinos are missing!

oscillations?

SuperKamiokande: 50 kton water-Cherenkov detector, 1km undergound

Can distinguish ν_e and ν_{μ} , measure zenith dependence

SuperKamiokande: 50 kton water-Cherenkov detector, 1km undergound

Can distinguish ν_e and ν_{μ} , measure zenith dependence

SuperKamiokande: 50 kton water-Cherenkov detector, 1km undergound

Can distinguish ν_e and ν_{μ} , measure zenith dependence

[SuperKamiokande, PRL 81 (1998)]

SuperKamiokande: 50 kton water-Cherenkov detector, 1km undergound

Can distinguish ν_e and ν_{μ} , measure zenith dependence

First observation of atmospheric u_{μ} disappearence because of oscillations mixing angle θ_{23} is maximal

S. Gariazzo

Solar neutrinos

Neutrinos are produced in multiple nuclear reactions inside the Sun

Main production mechanisms:

pp chain

CNO cycle

see e.g. [J.N. Bahcall, http: //www.sns.ias.edu/~jnb]

Solar neutrinos

Neutrinos are produced in multiple nuclear reactions inside the Sun

pp neutrinos are more abundant but fainter, more difficult to observe

Borexino first observed simultaneously *pp*, ⁷Be and *pep* neutrinos [1] as well as ⁸B [2] and CNO [3] neutrinos

Solar neutrinos

Neutrinos are produced in multiple nuclear reactions inside the Sun

S. Gariazzo

"Introduction on neutrino oscillations"

SNO: Sudbury Neutrino Observatory

[e.g. Bellerive+, NPB 2016]

Reactor (anti)neutrinos

- $\bar{\nu}_e$ produced in β decays of fission reaction products in the reactor core decay chains of all isotopes produce multiple $\bar{\nu}_e$
 - a ${\sim}1$ GW standard nuclear plant radiates ${\sim}~5{\times}10^{20}~\bar{
 u}_e$ per second!

S. Gariazzo

"Introduction on neutrino oscillations"

Reactor (anti)neutrinos

 $\bar{\nu}_e$ produced in β decays of fission reaction products in the reactor core decay chains of all isotopes produce multiple $\bar{\nu}_e$

a ${\sim}1$ GW standard nuclear plant radiates ${\sim}~5 \times 10^{20}~\bar{\nu}_e$ per second!

Main fissile isotopes: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

 $ar{
u}_e$ energy $\sim~1-10$ MeV

reactor $\bar{\nu}_e$ detected through inverse beta-decay: $\bar{\nu}_e + p \rightarrow e^+ + n$ (threshold ~ 1.8 MeV)

First measurement of θ_{13} : [DayaBay, PRL 108 (2012)]

Reactor experiments play key role in light sterile neutrino searches!
Accelerator neutrinos

Particle accelerators are artificial sources of (mainly muon) neutrinos e.g. CERN Neutrinos to Gran Sasso (CNGS) setup, [Mezzetto+, 2020]:

Off-axis beam allows to select almost monochromatic neutrinos:

20/51

Accelerator neutrinos

Particle accelerators are artificial sources of (mainly muon) neutrinos e.g. CERN Neutrinos to Gran Sasso (CNGS) setup, [Mezzetto+, 2020]:

Can generate flux of neutrinos and antineutrinos

Possibility to test asymmetries (e.g. $A_{\mu e}^{CP} = P_{\nu_{\mu} \to \nu_{e}} - P_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}$) \Rightarrow test CP violation (measure δ_{CP} ?)

future experiment DUNE will improve constraints on $\delta_{\rm CP}$ [EPJC 80 (2020)] expected $\lesssim 5\%$ resolution or 3σ sensitivity on 75% of the parameter space

Types of experiments Transitions due to Δm^2 observable only if $\Delta m^2 \frac{L}{E} \gtrsim 1 \Leftrightarrow \Delta m^2 \gtrsim \left(\frac{L}{E}\right)^{-1}$

Types of experiments

Transitions due to Δm^2 observable only if $\Delta m^2 \frac{L}{F} \gtrsim 1 \Leftrightarrow \Delta m^2 \gtrsim \left(\frac{L}{F}\right)^{-1}$

Short BaseLine (SBL) $L/E \lesssim 10 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 0.1 \text{ eV}^2$ Reactor: $L \sim 10 \text{ m}, E \sim 1 \text{ MeV}$ NEOS, DANSS, STEREO, Prospect, ... Accelerator: $L \sim 1 \text{ km}, E \gtrsim 0.1 \text{ GeV}$ LSND, MiniBooNE, Karmen, ... $\begin{array}{l} \mbox{Long BaseLine (LBL)} \\ \mbox{L/E} \lesssim 10^4 \ \mbox{eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-4} \ \mbox{eV}^2 \\ \mbox{Reactor: } L \sim 1 \ \mbox{km}, \ E \sim 1 \ \mbox{MeV} \\ \mbox{DayaBay, RENO, Double Chooz, ...} \\ \mbox{Accelerator: } L \sim 10^3 \ \mbox{km}, \ E \gtrsim \ \mbox{GeV} \\ \mbox{T2K, NOvA, OPERA, MINOS, ...} \\ \mbox{Atmospheric: } L \sim 10^2 - 10^4 \ \mbox{km}, \\ \ E \ \gtrsim \ 0.1 - 10^2 \ \mbox{GeV} \end{array}$

baseline

Kamiokande, SuperKamiokande, ANTARES, IceCube, ...

Very Long BaseLine (VLBL) $L/E \lesssim 10^5 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-5} \text{ eV}^2$ Reactor: $L \sim 10^2 \text{ km}$, $E \sim 1 \text{ MeV}$ KamLAND

Types of experiments

Transitions due to Δm^2 observable only if $\Delta m^2 \frac{L}{E} \gtrsim 1 \Leftrightarrow \Delta m^2 \gtrsim \left(\frac{L}{E}\right)^{-1}$

Short BaseLine (SBL) $L/E \lesssim 10 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 0.1 \text{ eV}^2$ Reactor: $L \sim 10 \text{ m}, E \sim 1 \text{ MeV}$ NEOS, DANSS, STEREO, Prospect, ... Accelerator: $L \sim 1 \text{ km}, E \gtrsim 0.1 \text{ GeV}$ LSND, MiniBooNE, Karmen, ...

Solar

 $L \sim 10^8$ km, $E \sim 0.1 - 10$ MeV

 $L/E \leq 10^{11} \text{ eV}^{-2} \Rightarrow \Delta m^2 \geq 10^{-11} \text{ eV}^2$

 $\begin{array}{l} \mbox{Long BaseLine (LBL)} \\ \mbox{L/E} \lesssim 10^4 \ \mbox{eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-4} \ \mbox{eV}^2 \\ \mbox{Reactor: } L \sim 1 \ \mbox{km}, \ E \sim 1 \ \mbox{MeV} \\ \mbox{DayaBay, RENO, Double Chooz,} \\ \mbox{Accelerator: } L \sim 10^3 \ \mbox{km}, \ E \gtrsim \ \mbox{GeV} \\ \mbox{T2K, NOvA, OPERA, MINOS, ...} \\ \mbox{Atmospheric: } L \sim 10^2 - 10^4 \ \mbox{km}, \\ \ E \ \gtrsim \ 0.1 - 10^2 \ \mbox{GeV} \end{array}$

baseline

Kamiokande, SuperKamiokande, ANTARES, IceCube, ...

Very Long BaseLine (VLBL) $L/E \lesssim 10^5 \text{ eV}^{-2} \Rightarrow \Delta m^2 \gtrsim 10^{-5} \text{ eV}^2$ Reactor: $L \sim 10^2 \text{ km}$, $E \sim 1 \text{ MeV}$ KamLAND

Basically:
$${\sf LBL} o \Delta m^2_{31}$$
, ${\sf Solar}/{\sf VLBL} o \Delta m^2_{21}$

3 Status of three-neutrino parameters State-of-the-art constraints

Based on:

JHEP 02 (2021) 071

see also http:

//globalfit. astroparticles.es

Solar $+$ VLBL reactors		
Experiments:	Parameters:	
SuperK SNO Borexino KamLAND	$ \begin{array}{c} \theta_{12} \\ \Delta m_{21}^2 \\ (\theta_{13}) \end{array} $	

baseline defined by $\Delta m_{kj}^2 \cdot L/E$ LBL: long baseline $(E/L \gtrsim \Delta m_{31}^2)$ VLBL: short baseline $(E/L \sim \Delta m_{21}^2)$ S. Gariazzo "Introduction on neutrino oscillations" AQIAC 2023, 25/04/2023

Solar + VLBL reactors		LBL reactors	
Experiments:	Parameters:	Experiments:	Parameters:
SuperK SNO Borexino KamLAND	$\begin{array}{c} \theta_{12} \\ \Delta m_{21}^2 \\ (\theta_{13}) \end{array}$	DayaBay RENO DoubleChooz 	$egin{array}{c} \theta_{13} \ \Delta m_{31}^2 \ (heta_{12}) \ (\Delta m_{21}^2) \end{array}$
	ļ		

baseline defined by $\Delta m_{kj}^2 \cdot L/E$ LBL: long baseline $(E/L \gtrsim \Delta m_{31}^2)$ VLBL: short baseline $(E/L \sim \Delta m_{21}^2)$ S. Gariazzo "Introduction on neutrino oscillations" AQIAC 2023, 25/04/2023

Solar + VLBL reactors		
Experiments:	Parameters:	
SuperK SNO Borexino KamLAND	$ \begin{array}{c} \theta_{12} \\ \Delta m_{21}^2 \\ (\theta_{13}) \end{array} $	

Atmospheric		
Experiments:	Parameters:	
Antares IceCube	$ heta_{23} \ \Delta m_{31}^2$	
SuperK	$egin{array}{c} (heta_{13}) \ (\delta_{ m CP}) \end{array}$	

22/51

baseline defined by $\Delta m_{kj}^2 \cdot L/E$ LBL: long baseline $(E/L \gtrsim \Delta m_{31}^2)$ VLBL: short baseline $(E/L \sim \Delta m_{21}^2)$ S. Gariazzo "Introduction on neutrino oscillations" AQIAC 2023, 25/04/2023

Solar + VLBL reactors		LBL reactors	
Experiments:	Parameters:	Experiments:	Parameters:
SuperK SNO Borexino KamLAND	$ \begin{array}{c} \theta_{12} \\ \Delta m_{21}^2 \\ (\theta_{13}) \end{array} $	DayaBay RENO DoubleChooz 	$ \begin{array}{c} \theta_{13} \\ \Delta m_{31}^2 \\ (\theta_{12}) \\ (\Delta m_{21}^2) \end{array} $
Atmospheric		LBL accelerators	
Experiments:	Parameters:	Experiments:	Parameters:
Antares IceCube SuperK	$egin{aligned} & heta_{23} \ & \Delta m_{31}^2 \ & (heta_{13}) \ & (\delta_{\mathrm{CP}}) \end{aligned}$	NOvA T2K MINOS	$egin{array}{c} heta_{13} \ heta_{23} \ heta_{23} \ heta m_{31}^2 \ heta_{ m CP} \end{array}$

baseline defined by $\Delta m_{kj}^2 \cdot L/E$ LBL: long baseline $(E/L \gtrsim \Delta m_{31}^2)$ VLBL: short baseline $(E/L \sim \Delta m_{21}^2)$ S. Gariazzo "Introduction on neutrino oscillations" AQIAC 2023, 25/04/2023

22/51

[JHEP 02 (2021)]

Solar experiments and KamLAND

Mainly test θ_{12} and Δm_{21}^2

Solar experiments: (0.1 MeV $\lesssim E \lesssim 20$ MeV) Homestake [1] GALLEX [2] SAGE [3] Borexino [4][5] SuperK (day/night) [6][7][8] SNO [9]

KamLAND [10] (reactor $\bar{\nu}_e$ s, avg. distance 180 km)

Residual sensitivity to θ_{13} not considered in this plot, only full analysis

Reactor experiments

[JHEP 02 (2021)]

Mainly test θ_{13} and Δm_{31}^2 reactor $\bar{\nu}_e$ s (~ 1.8 MeV $\lesssim E \lesssim$ 8 MeV)

RENO [1][2][3]: 2 detectors, 294 m / 1383 m from the centerline of sources

DayaBay [4]: 8 detectors, 2 in near experimental halls ($\sim0.3-1.3$ Km) and 4 far away ($\sim1.5-1.9$ Km)

Atmospheric experiments

[JHEP 02 (2021)]

Mainly test $heta_{23}$ and Δm^2_{31} energies of interest: 0.1 GeV $\lesssim E \lesssim 100$ GeV

SuperKamiokande [1] phases I-III plus public χ^2 grid from phase IV

IceCube DeepCore [2][3] 3yrs of data

Accelerator experiments

[JHEP 02 (2021)]

Measure $\nu_{\mu} \rightarrow \nu_{e}$ or $\nu_{\mu} \rightarrow \nu_{\mu} \Rightarrow$ test θ_{13} , θ_{23} , Δm_{31}^{2} and δ can select mostly pure beam of neutrinos or antineutrinos always near (initial unoscillated flux) + far (oscillated flux) detector NO ν A [1]: 212 μ^{-} (105 μ^{+}) events + 82 e^{-} (33 e^{+}) events T2K [2]: 318 μ^{-} (137 μ^{+}) events + 94 e^{-} (16 e^{+}) events MINOS [3][4][5]: complete data set until 2013, no sensitivity on δ

Accelerator experiments

[JHEP 02 (2021)]

Measure $\nu_{\mu} \rightarrow \nu_{e}$ or $\nu_{\mu} \rightarrow \nu_{\mu} \Rightarrow$ test θ_{13} , θ_{23} , Δm_{31}^{2} and δ can select mostly pure beam of neutrinos or antineutrinos always near (initial unoscillated flux) + far (oscillated flux) detector NO ν A [1]: 212 μ^{-} (105 μ^{+}) events + 82 e^{-} (33 e^{+}) events T2K [2]: 318 μ^{-} (137 μ^{+}) events + 94 e^{-} (16 e^{+}) events MINOS [3][4][5]: complete data set until 2013, no sensitivity on δ

Global constraints - I

What do we get from the combination of all the datasets?

Global constraints - II

The situation for the CP phase δ is complicated

Three Neutrino Oscillations

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 $U_{\alpha k}$ described by 3 mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ and one CP phase δ

Current knowledge of the 3 active ν mixing: [JHEP 02 (2021) update]

M Measurements of neutrino masses Kinematics of β decay

Based on:

- Giunti&Kim book "Fundamentals of Neutrino Physics and Astro-
- physics" (2007)

KATRIN

de Salas+, Frontiers 5 (2018) 36

$$eta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^- + \bar{\nu}_e$

 $Q_{\beta} = M_i - M_f - m_e$ total available energy $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_e - m_e)$ neutrino energy

notice that max electron energy is:

$${\cal T}_{
m max} = {\cal Q}_eta \ - \ m_{ar
u_e}$$

Kurie function: (degenerate ν masses) $K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\tilde{\nu}_{e}}^2} \right]^{1/2}$

Useful to describe the e^- spectrum near the endpoint

$$eta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^- + \bar{\nu}_e$

 $Q_{\beta} = M_i - M_f - m_e$ $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_{\rho} - m_{\rho})$ total available energy neutrino energy

notice that max electron energy is:

 $T_{\rm max} = Q_{\beta} - m_{\bar{\nu}_{a}}$

Kurie function: (degenerate ν masses) $K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\tilde{\nu}_s}^2} \right]^{1/2}$

Useful to describe the e spectrum near the endpoint

notice: flavor neutrinos have no definite mass! $|m_{\bar{\nu}_a}^2 = \sum |U_{ei}|^2 m_i^2$

$$\beta$$
 decay: $\mathcal{N}(A, Z) \longrightarrow \mathcal{N}(A, Z+1) + e^{-} + \bar{\nu}_{e}$

 $Q_{\beta} = M_i - M_f - m_e$ total available energy $E_{\nu} = Q_{\beta} - T = Q_{\beta} - (E_e - m_e)$

$$T_{\max} = Q_{\beta} - m_{\overline{\nu}_e}$$

Kurie function: (degenerate
$$\nu$$
 masses)

$$K(T) = \left[(Q_{\beta} - T) \sqrt{(Q_{\beta} - T)^2 - m_{\overline{\nu}_e}^2} \right]^{1/2}$$

Useful to describe the e^- spectrum near the endpoint

notice: flavor neutrinos have no definite mass! $m_{\bar{\nu}}^2$

$$\frac{2}{\bar{\nu}_e} = \sum |U_{ei}|^2 m_i^2$$

$$\mathcal{K}(\mathcal{T}) = \begin{bmatrix} \mathsf{V}_{\mu} - \mathcal{T} \\ \mathsf{V}_{\mu} \\ \mathsf{K}(\mathcal{T}) = \begin{bmatrix} (\mathcal{Q}_{\beta} - \mathcal{T}) \sum_{i=1}^{N_{\nu}} |\mathcal{U}_{ei}|^2 \sqrt{(\mathcal{Q}_{\beta} - \mathcal{T})^2 - m_i^2} \end{bmatrix}^{1/2} & \text{with different} \\ \mathsf{masses } m_i \\ \mathsf{mixing angles} \\ \mathsf{enter} (|\mathcal{U}_{ei}|^2) \end{bmatrix}$$

1

 β decay

$$K(T) = \left[(Q_{\beta} - T) \sum_{i=1}^{N_{\nu}} |U_{ei}|^2 \sqrt{(Q_{\beta} - T)^2 - m_i^2} \right]^{1/2}$$

endpoint shifted + one kink for each mass eigenstate

S. Gariazzo

"Introduction on neutrino oscillations"

AQIAC 2023, 25/04/2023

 β decay

$$K(T) = \left[(Q_{\beta} - T) \sum_{i=1}^{N_{\nu}} |U_{ei}|^2 \sqrt{(Q_{\beta} - T)^2 - m_i^2} \right]^{1/2}$$

Much harder to see the endpoint shift and kinks!

S. Gariazzo

"Introduction on neutrino oscillations"

KATRIN results

KATRIN results

Neutrino masses from neutrinoless double β decay

S. Gariazzo

"Introduction on neutrino oscillations"

AQIAC 2023, 25/04/2023

33/51

A Additional neutrinos Particularly, the light sterile neutrino

Based on:

- SG+, JPG 43 (2016)
- SG+, JHEP 06 (2017) and updates
- several experiments

Active neutrinos

In principle, previous discussion is valid for N neutrinos

Masses in the Standard Model

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

Do three-neutrino oscillations explain all experimental results?

[SG+, JPG 43 (2016) 033001]

A large neutrino family

In principle, previous discussion is valid for N neutrinos $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} \\ \dots & & \ddots \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

A large neutrino family

In principle, previous discussion is valid for N neutrinos

 $N \times N$ mixing matrix, N flavor neutrinos, N massive neutrinos

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \\ |\nu_{s_{1}}\rangle \\ \dots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \vdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} \\ \dots & & \ddots \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \\ |\nu_{4}\rangle \\ \dots \end{pmatrix}$$

Our case will be 3 (active)+1 (sterile), a perturbation of 3 neutrinos case

S. Gariazzo

"Introduction on neutrino oscillations"

AQIAC 2023, 25/04/2023

37/51

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{k j}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

Short BaseLine (SBL) oscillations: $\frac{\Delta m_{41}^2 L}{E} \simeq 1$

At SBL, oscillations due to Δm_{21}^2 and $|\Delta m_{31}^2|$ do not develop

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

Short BaseLine (SBL) oscillations: $\frac{\Delta m_{41}^2 L}{E} \simeq 1$ At SBL, oscillations due to Δm_{21}^2 and $|\Delta m_{31}^2|$ do not develop APPearance $(\alpha \neq \beta)$ $(\overrightarrow{\nu_{\alpha}})$ source detect different of $(\overrightarrow{\nu_{\alpha}})$ flavor $(\overrightarrow{\nu_{\beta}})$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = |\langle \nu_{\alpha} | \nu(L) \rangle|^{2} = \sum_{k,j} U_{\beta k} U_{\alpha k}^{*} U_{\beta j}^{*} U_{\alpha j} \exp\left(-i \frac{\Delta m_{kj}^{2} L}{2E}\right)$$

If $m_4 \gg m_\ell$, faster oscillations

 ν_4 oscillations are averaged in most neutrino oscillation experiments

Effect of 4th neutrino only visible as global normalization

Exclusion curves

"Introduction on neutrino oscillations'

[PRL 121 (2018) 221801]

MiniBooNE

 $L \simeq 541$ m, 200 MeV $\leq E \lesssim 3$ GeV

[PRL 121 (2018) 221801]

MiniBooNE

41/51

Reactor Antineutrino Anomaly (RAA)

[Mention+, PRD 83 (2011)]

2011: new reactor $\bar{\nu}_e$ fluxes by Huber and Mueller+ (HM)

[Huber, PRC 84 (2011) 024617] [Mueller+, PRC 83 (2011) 054615]

Previous reactor rates evaluated with new fluxes \Rightarrow deficit

Reactor antineutrino spectrum and RAA

[Giunti+, PLB 2022]

When the RAA was discovered:

conversion method (ILL data) and ab initio calculations in agreement

[Huber, 2011], [Mueller+, 2011] spectra

Reactor antineutrino spectrum and RAA

[Giunti+, PLB 2022]

Revised *ab initio* calculation: [Estienne, Fallot+, PRL 123 (2019)]

Reactor antineutrino spectrum and RAA

[Giunti+, PLB 2022]

Conversion method on new measurements of electron spectrum at Kurchatov Institute (KI) (updates ILL measurements from the 80's):

[Kopeikin+, PRD 2021]

ν_s at reactors in 2020

[Neutrino-4, PZETF 2020]

[STEREO, PRD 2020]

S. Gariazzo

"Introduction on neutrino oscillations"

AQIAC 2023, 25/04/2023

44/51

Neutrino-4

claimed > 3σ preference for 3+1 over 3ν case

> best fit incompatible with other reactor experiments

Neutrino-4

45/51

energy resolution smearing not properly taken into account?

Neutrino-4

[Giunti+, PLB 2021]

proper energy resolution treatment moves best-fit $\rightarrow \sin^2 2\vartheta \simeq 1$

need to take into account violation of Wilk's theorem ↓ relaxed constraints

Significance of the preference?

standard χ^2 distribution may be not appropriate to study the significance due to undercoverage at angles below the experiment sensitivity

Significance of the preference?

[Giunti, PRD 101 (2020)]

standard χ^2 distribution may be not appropriate to study the significance due to undercoverage at angles below the experiment sensitivity

S. Gariazzo

"Introduction on neutrino oscillations"

AQIAC 2023, 25/04/2023

46/51

[SAGE, 2006][Giunti&Laveder, 2011] Gallium anomaly $L \simeq 1.9 \text{ m}$ $L \simeq 0.6 \text{ m}$ Gallium radioactive source experiments: GALLEX and SAGE ν_e sources: $e^- + {}^{51}$ Cr $\rightarrow {}^{51}$ V + ν_e $e^- + {}^{37}$ Ar $\rightarrow {}^{37}$ Cl + ν_e $E \simeq 0.75$ MeV $E \simeq 0.81 \text{ MeV}$ ν_e +⁷¹ Ga \rightarrow^{71} Ge + e^- In the detector: $3/2^{-}$ $500 \, \mathrm{keV}$ $5/2^{-}$ $175 \,\mathrm{keV}$ $1/2^{-}$ ⁷¹Ge $232 \,\mathrm{keV}$ 3/2⁷¹Ga cross sections of the transitions from [Krofcheck+, PRL 55 (1985) 1051] [Frekers+, PLB 706 (2011) 134]

Gallium anomaly revisited

New cross section calculations: (interacting nuclear shell model)

[Kostensalo+, PLB 795 (2019) 542-547]

Gallium anomaly revisited

New cross section calculations: (interacting nuclear shell model)

[SAGE, 2006] [Giunti&Laveder, 2011] [Kostensalo+, PLB 795 (2019) 542-547]

Compare with DANSS+NEOS:

Better compatibility with reactors

MINOS & MINOS+

S. Gariazzo

"Introduction on neutrino oscillations"

$1 \,\, { m GeV} \,\, \lesssim \,\, E \,\, \lesssim \,\,$ 40 GeV,

peak at 3 GeV

MINOS & MINOS+

[IceCube, PRL 2020]

IceCube 8 yr update

APP – DIS tension in 2019

APP – DIS tension in 2019

[SG+, in preparation]

[SG+, in preparation]

APP – DIS tension in 2019

let's take a break