Nature of neutrino mass, refraction and Cosmology

A. Yu. Smirnov

Max-Planck Institut fur Kernphysik, Heidelberg, Germany

Workshop " Applications of Quantum Information in Astrophysics and Cosmology, Cape Town, April 25, 2023

The Nobel prize in physics 2015

Takaaki Kajita

Arthur B. McDonald

" for the discovery of neutrino oscillations, which shows that neutrinos have mass"

How do we know that the mass behind oscillation?

Oscillations without mass

Lincoln Wolfenstein

Oscillations of massless neutrinos

General conditions for oscillations:

- neutrinos with different dispersion relations
- production of mixed states of these neutrinos

Non-standard interactions of neutrinos – Non-diagonal in the flavor basis \rightarrow potentials

$$E_i = p + V_i$$

Introduced 4 -fermionic (local) interactions

 \rightarrow imply heavy mediators

 \rightarrow no energy dependence of the oscillation effects

The energy dependence found

ίī)

Events / 0.425 MeV

also MINOS, Daya Bay, RENO ...

In agreement with the presence of the mass term in the Hamiltonian of evolution:

$$H = E = \sqrt{p^2 + m^2} = p + m^2/2E$$

What is the mass?

Mass term changes of chirality of fermion:

In the SM mass generated due to coupling with classical scalar field, Vacuum expectation value VEV of the Higgs field:

$$m = h \langle H_0 \rangle$$

= value of the field in the minimum of potential

Variations: $m = h < \Delta_0 >$ triplet for Majorana $m = h^2 < H_0 >^2 / M_R$ Seesaw

In oscillations: no change of chirality: (spin state does not change)

effects ~ m²

Matter potential

Any contribution to the Hamiltonian of evolution which has A/E form with constant A can reproduce the oscillation data

Even in the SM: $V \sim \begin{bmatrix} 1/m_W^2, s \ll m_W^2 \\ 1/2m_WE, s \gg m_W^2 \end{bmatrix}$ *C. Lunardini, A.S.*

Above resonance V ~ $1/E \rightarrow$ potential can substitute the mass term

If mediator is light as well as target particle is light, the 1/E dependence shows up at low explored energies.

Ki-Yong Choi, Eung Jin Chun, Jongkuk Kim, 1909.10478 2012.09474 [hep-ph],

Effective mass squared

Can introduce the effective or refractive mass squared as

 $V = m_{ref}^2/2E$

m_{ref}² = 2EV

m_{ref}² = constant – checked down to 0.1 MeV

 \rightarrow take E_R \ll 0.1 MeV

 m_{ref}^2 = singlet of SM symmetry group in contrast to mass

Large number density of target particles is required \rightarrow form substantial part of whole DM

Is this scenario excluded?

Manibrata Sen, A. Y. S. to appear

Refraction in cold gas

Cosmological consequences

Refraction in classical scalar field

Refraction in a cold gas

A realization

Target (DM): complex scalar field ϕ with mass m_{ϕ} Medator: χ_k - light Majorana fermions with masses $m_{\chi k}$ At least two χ are needed to explain data

$$L = g_{\alpha k} \overline{v}_{\alpha L} \chi_{kR} \phi + \frac{1}{2} m_{\chi k} \chi_{kR}^{T} \chi_{kR} + h.c. \qquad \begin{array}{l} k = 1,2 \\ \alpha = e, \mu, \tau \end{array}$$

$$g_{\alpha k} < 10^{-7}$$
We assume zero VEV $< \phi > = 0$

The interaction can be generated via mixing of ϕ with SM Higgs boson

In general (depending on production) the field has classical and quantum components:

$$\phi = \phi_c + \phi_q$$

First consider the quantum one

Refraction on scalar DM

For small m_{φ} resonance at low, observable energies

A.Y.S. , V. Valera, 2106.13829 [hep-ph]

Potential: standard computations

$$V_{\alpha\beta} = \Sigma_{k} V_{\alpha\beta k}^{0} \left(\frac{(1-\varepsilon)(\gamma-1)}{(\gamma-1)^{2} + \xi_{k}^{2}} + \frac{1+\varepsilon}{\gamma+1} \right)$$

 $V_{\alpha\beta k}^{0} = \frac{g_{\alpha k} g_{\beta k}}{2m_{\chi}^{2}}^{*} (\overline{n_{\phi}} + n_{\phi})$ n_{ϕ} and $\overline{n_{\phi}}$ - the number densities of ϕ and ϕ *

For simplicity
$$m_{\chi 1} = m_{\chi 2} = m_{\chi}$$

 $y = E/E_R$ $E_R = m_{\chi}^2/2m_{\phi}$

$$\epsilon = (\overline{n_{\phi}} - n_{\phi})/(\overline{n_{\phi}} + n_{\phi}) \qquad C\text{-asymmetry of the } \phi \text{ gas}$$

$$\xi = \Gamma/E_{R} \qquad \Gamma = \frac{g^{2}}{4\pi} m_{\chi} \quad \text{width of resonance}$$

we neglect ξ

Refraction mass squared

Effective mass squared $m_{ref}^2 = 2EV$

$$m_{ref}^2 = m_{inf}^2 \frac{\gamma(\gamma - \varepsilon)}{\gamma^2 - 1}$$

where

$$m_{inf}^2 = \Sigma_k g_{\alpha k} g_{\beta k}^* (\frac{n_{\phi} + n_{\phi}}{m_{\phi}})$$

is the refraction mass squared at y \rightarrow infty

$$m_{inf}^2 = \Sigma_k g_{\alpha k} g_{\beta k}^* \frac{\rho_{\phi}}{m_{\phi}^2}$$

$$\rho_{\phi} = m_{\phi}(\overline{n_{\phi}} + n_{\phi})$$
 is the energy density in ϕ

Properties of the refraction mass squared

$$y << 1$$
 $m_{ref}^2/m_{inf}^2 = y(y - \varepsilon) = -\varepsilon y$

reproducing the Wolfenstein result

For C-symmetric background $m_{ref}^2/m_{inf}^2 = y^2$ - decreases faster

y >> 1

$$m_{ref}^2/m_{inf}^2 = -\begin{bmatrix} 1 - \varepsilon/y , \varepsilon \neq 0 \\ 1 + y^{-2} & \varepsilon = 0 \end{bmatrix}$$

converges to constant faster

For antineutrinos $\varepsilon \rightarrow -\varepsilon$

$$m_{inf}^2$$
 (nu) = m_{inf}^2 (antinu)

 m_{inf}^2 has all the properties of usual mass

Fitting the oscillation data

Nearly TBM mixing can be obtained for $g_{e1} = g_{\mu 1} = g_{\tau 1} = g_1$ $g_{e2} = 0$ $g_{\mu 2} = -g_{\tau 2} = g_2$

These results do not depend on m_{χ} m_{\chi} is determined by m_{φ} and the resonance energy:

Masses (normal hierarchy) $m_1 = 0$

$$m_{\chi} = \sqrt{2m_{\phi}E_{R}}$$

 $g_1 = m_{\phi} \sqrt{\frac{\Delta m_{sol}^2}{30}}$

Astrophysical bounds

Dissipation of the astrophysical neutrino fluxes due to inelastic scattering on background (energy loss, scattering angle)

 $\nu \phi \rightarrow \nu \phi$

Upper bound on

 $\sigma_v / m_\phi \rightarrow bounds on g as functions of m_\phi$

SN1987A, 50 kpc

K.-Y. Choi, J. Kim, C Rott PRD99 (2019) 8, 083018

Ice Cube observation of neutrino event IC-170922A with E =290 TeV in association with blazar TXS0506+56 (z = 0.3365, 1421 Mpc)

Viable ranges of parameters

Bounds and regions required for explanation of oscillation data by refraction in $g - m_{\phi}$ plane for different values of m_{χ}

UFD - bound from heating of ultra-faint galaxies

Refraction mass vs. VEV mass

Refraction mass is different in different space time points and also depend on energy:

 $m_{ref}^{2}(x, t, E) = n_{\phi}(x, t) f(E)$

 $m_{\rm ref}{}^2$ is different in solar system, center of Galaxy, intergalactic space

The average $m_{ref}^2(z)$ in the Universe increased in the past.

VEV mass is determined by minimum of the potential, can depend on t and x in the presence of topological defects and due to thermal corrections to the potential in the Early Universe

Cosmological Evolution, bounds

Evolution of the refractive mass

In the present epoch, z = 0, the average refraction mass in the Universe

 $m_{ref}^{2}(0) \sim \xi m_{ref}^{2}(loc)$

 ξ ~ 10^{-5} $\,$ - inverse of local (near the Earth) over-density of background

With explicit energy dependence at small y m_{ref}² (0) ~ ξ m_{inf}² (loc) γ(y - ε) y = E/E_R

With redshift $n_{\phi}(z) = (1 + z)^3 n_{\phi}(0)$, E(z) = (1 + z)E(0)

 $m_{ref}^{2}(z) \sim \xi m_{inf}^{2}(loc)(1 + z)^{4} E(0)/E_{R}[(E(0)/E_{R}(1 + z) - \varepsilon]]$

 $E(0) \sim 10^{-3} \text{ eV}$ is the present average energy of relic neutrinos

For large enough E_R the mass $m_{ref}^2(z)$ can satisfy cosmological bound on sum of neutrino masses from structure formation

Bound on resonance energy

In the epoch of matter-radiation equality, z ~ 1000, DM should already exist and structures start to form

We require that

$$m_{ref}^{2} (1000) \sim (\Sigma m_{v})^{2} < 10^{-2} \text{ eV}^{2}$$

$$m_{inf}^{2} (loc) = \Delta m_{atm}^{2}$$
For y << ε

$$E_{R} > E(0) \xi \varepsilon (1 + z)^{4} \frac{\Delta m_{atm}^{2}}{(\Sigma m_{v})^{2}} \qquad \Rightarrow \qquad E_{R} > 1.2 \varepsilon \text{ keV}$$
For $\varepsilon = 0$

$$E_{R} > E(0) [\xi (1 + z)^{5}]^{1/2} \frac{\sqrt{\Delta m_{atm}^{2}}}{\Sigma m_{v}} \qquad \Rightarrow \qquad E_{R} > 30 \text{ eV}$$

The bound for refractive (dynamical) masses should be reconsidered (group velocities, mass in density perturbations etc...)

Viable ranges of parameters

Allowed and excluded regions in m_{χ} - m_{φ} plane

Coherence:

States of medium with ϕ being absorbed from different spacetime points are coherent once $\Delta x < \lambda_{DB} = 2\pi/v m_{\phi}$

Energy - momentum conservation OK within $\Delta p < 1/L$ (baseline)

Perturbativity and resummation

Radius of interactions below resonance : $1/m_{\chi}$

Large number of scatterers ϕ within interaction volume. Processes with many ϕ should be taken into account

 $\frac{v \phi \phi \rightarrow v \phi \phi}{\left|\frac{m_{\phi}}{m_{\chi}^{2}}\right|^{\frac{1}{p}}} \frac{v \phi \phi \phi}{v \phi \phi} \qquad \text{with Bose enhancement?}$ $\frac{v \chi}{\left|\frac{m_{\phi}}{m_{\chi}^{2}}\right|^{\frac{1}{p}}} \frac{v \chi}{v \phi} \qquad V = \frac{\varepsilon g^{2} n_{\phi}}{2m_{\chi}^{2}} \left(1 - \frac{\varepsilon g^{2} n_{\phi}}{2Em_{\chi}^{2}} + \dots\right)$ $\phi \phi^{*} \phi \phi^{*} \qquad = \frac{\varepsilon g^{2} n_{\phi}}{2m_{\chi}^{2}} \left(1 + \frac{\varepsilon g^{2} n_{\phi}}{2Em_{\chi}^{2}}\right)^{-1}$ ≤ 1

At low energies and high densities the perturbativity can be broken

$$E_{pert} > \frac{\varepsilon g^2 n_{\phi}}{2m_{\chi}^2} = \frac{m_{inf}^2}{2E_R} = \frac{\Delta m_{atm}^2}{2E_R} \qquad \text{For } E_R = 30 \text{ eV}, E_{pert} > 10^{-4} \text{ eV}$$

important for relic neutrinos?

Refraction in classical field

Coherent classical field

System of ϕ with large occupation number can be treated as classical scalar field

Condition $\lambda_0^3 n_0 >> 1$

$$\begin{array}{ll} \lambda_{\varphi} = 2\pi/k_{\varphi} = 2\pi/vm_{\varphi} & - \mbox{ de Broglie wave of } \varphi \\ v \sim 10^{-3} & - \mbox{ virial velocity in Galaxy} \end{array}$$

$$\Rightarrow \qquad m_{\phi} \ll 2\pi \left(\frac{\rho_{\phi}}{2\pi v^3}\right)^{1/4} \Rightarrow \qquad m_{\phi} \ll 30 \text{ eV is well satisfied}$$

In terms of QFT such a scalar field ϕ_c can be introduced as expectation value of the field operator in the coherent state:

$$\frac{\phi_{c}}{\phi_{coh}} = \langle \phi_{coh} | \phi | \phi_{coh} \rangle$$

$$|\phi_{coh}\rangle = \exp\left[\sqrt{\frac{d\mathbf{k}}{(2\pi)^{3}}} \left[f_{a}(\mathbf{k}) a_{k}^{+} + f_{b}(\mathbf{k}) b_{k} \right] \right] | 0 \rangle \qquad \mathbf{k} = m_{\phi} \mathbf{v}$$

It can be parameterized as

$$\phi_c(\mathbf{x}) = F(\mathbf{x} + \mathbf{t}) e^{-i\Phi}$$
 $F^2 \sim \rho_{\phi} / m_{\phi}^2$

Neutrino mass in classical field

In the Lagrangian: $\phi \rightarrow \phi_c$

Mass matrix in the basis (v_{f}, χ^{c}_{L}) = ($v_{e}, v_{\mu}, v_{\tau}, \chi_{1}, \chi_{2}$)

$$M = \begin{pmatrix} 0 & g_{\alpha k} \phi_{c}^{\star} \\ g_{k \alpha} \phi_{c}^{\star} & \text{diag}(m_{\chi 1}, m_{\chi 2}) \end{pmatrix}$$

The Hamiltonian

$$H = \frac{1}{2E} M M^{+} = \frac{1}{2E} \begin{pmatrix} |F|^{2} \Sigma_{k} g_{\alpha k} g_{\beta k}^{*} & g_{\alpha k} F m_{\chi k} e^{i\Phi} \\ g_{k\alpha}^{*} F^{*} m_{\chi k} e^{-i\Phi} & M_{\chi}^{2} \end{pmatrix}$$

 $M_{\chi^2} = f(|F|^2, |g_{\alpha k}|^2, m_{\chi k}^2)$

Properties of the Hamiltonian

 $3x3\,$ flavor block has the same form as refraction matrix $m_{inf}{}^2$ Additional time dependence can appear in F: For real field

 $|\mathsf{F}|^2 \sim \rho_{\phi} / m_{\phi}^2 \cos^2 m_{\phi} t$

For C-asymmetric background the amplitude of oscillations can be suppressed

Averaging?

No resonance dependence of mass on energy No decrease of the mass with energy at low energies

 $v - \chi$ mixing

ν - χ mixing and oscillations

After TBM rotation of active neutrinos

- one (masless) state decouples
- rest 4 states split into two pairs which evolve independently

$$M_{k} = \begin{pmatrix} 0 & m_{ak} e^{i\Phi} \\ m_{ak} e^{i\Phi} & m_{\chi k} \end{pmatrix} \qquad k = 1, 2$$

Oscillation parameters of active-sterile systems:

$$\Delta m_{ak}^{2} = 2\sqrt{(m_{\chi k}^{2} - 2E d\Phi/dt)^{2} + m_{ak}^{2} m_{\chi k}^{2}}$$

$$\tan 2\theta_{ak} = \frac{2m_{ak} m_{\chi k}}{m_{\chi k}^{2} - 2E d\Phi/dt} \qquad m_{\chi k}^{2} < < m_{a1}^{2} = \Delta m_{sol}^{2}$$

Two viable cases to avoid bounds from active-sterile oscillations $d\Phi/dt = 0$ - pseudo Dirac neutrinos with $\Delta m_{ak}^2 < 10^{-12} eV^2$ $E d\Phi/dt \sim Em_{\phi} \gg m_{\chi k}^2$ - small mixing

We can not exclude that neutrino oscillations are explained the refractive mass squared

Refraction in cold gas: energy dependent mass at low energies: avoid the cosmological bound on sum of neutrino masses from structure formation

Refraction in classical coherent field: energy independent mass: Problem with cosmology? Late formation of the field?

Nature of neutrino mass can be related the nature of Dark matter and the Cosmological evolution

Backup slides

Neutrino refraction on scalar DM

S. F Ge and H Murayama, 1904.02518 [hep-ph]

Ki-Yong Choi, Eung Jin Chun, Jongkuk Kim, 1909.10478 [hep-ph] 2012.09474 [hep-ph]

Neutrino scattering on DM particles ϕ (target) with χ_R - mediator

n and \overline{n} – the number densities of φ and $\varphi*$

$$\Gamma = \frac{g^2}{32\pi} m_{\chi}$$
Resonance: $s = m_f^2 \rightarrow E_R = m_{\chi}^2/2m_{\phi}$

 $V_u \sim \frac{u}{u - m_{\chi}}$

 $V_{s} \sim \frac{(s - m_{\chi}^{2}) \bar{n}}{(s - m_{\chi}^{2})^{2} + s \Gamma^{2}}$

2

Effect of classical component

A. Berlin, 1608.01307 [hep-ph]

Ultra-light scalar DM, large number density - as a classical field, solution

$$\phi(t, x) \sim \frac{\sqrt{2\rho(x)}}{m_{\phi}} \cos(\omega t - kx)$$

 $\omega \sim m_{\phi}$ k = $m_{\phi}v$ v ~ 10⁻³ – virialized velocity in the Galaxy generates the mass term $m' = g \phi_c$ m' $v_L f_R + m_f f_L f_R + h. c.$

Oscillating mass with period
$$T_{osc} = \frac{2\pi}{m_{\phi}} = 4 \ 10^{-15} \text{ sec} (1 \text{ eV/m}_{\phi})$$

Lost of coherence due to velocity dispersion $\Delta v \sim v \Rightarrow \Delta \omega = m_{\phi} v \Delta v \sim m_{\phi} v^2$ Coherence time: $\tau_{coh} = \frac{2\pi}{\Delta \omega} = 4 \ 10^{-9} \ sec \ (1 \ eV/m_{\phi})$ Coherence length: $L_{coh} = \frac{2\pi}{\Delta v \ m_{\phi}} = 1.2 \ 10^{-3} \ m \ (1 \ eV/m_{\phi})$

System transforms in the cold gas of individual scatterers. Still in some aspects can be considered as classical field without t variations

Phenomenology. Bounds on parameters

 ν - DM inelastic scattering

$$\sigma = \frac{g^4}{16\pi} \begin{bmatrix} \frac{s}{m_f^4} & s \ll m_f^2 \\ \frac{1}{s} & s \gg m_f^2 \end{bmatrix}$$

Upper phenomenological bounds on σ/m_{ϕ} $\sigma/m_{\phi} < \xi$ for certain neutrino energies E_{ξ} $m_{f} > g\left(\frac{E_{\xi}}{8\pi\xi}\right)^{1/4}$ $m_{\phi} < m_{f}^{2}/2E_{\xi}$ $m_{\phi} > g^{2}\left(\frac{1}{32\pi E_{\xi}\xi}\right)^{1/2}$ $m_{\phi} > m_{f}^{2}/2E_{\xi}$

Bounds from neutrino DM interactions

The most stringent bound from Ly α relic neutrinos

 $\xi < 10^{-33} \text{ cm}^2 / \text{GeV}$

R.J. Wilkerson, C. Boehm, L. Lesgourges JCAP 1405 (2014) 011 SN87A, E = 10 MeV

Ice Cube

Relic SN neutrinos

Stability of DM

Bounds on parameters Ki-Yong Choi, Eung Jin Chun, Jongkuk Kim, A.S.

Bounds

 $m_f < 10^{-4} eV$ $m_{\phi} < 10^{-13} eV$ $g < 10^{-12}$

Bounds on parameters

Allowed values:

Ki-Young Choi, Eung Jin Chun, Jongkuk Kim, 2012.09474 [hep-ph]

Green band: $\Delta m_{eff}^2 = \Delta m_{atm}^2$

Upper bounds on y from scattering of neutrinos from SN1987A on DM ϕ with zero C- asymmetry and two different masses of mediator f

Similar bound from $Ly\alpha$ (relic neutrinos).

the corresponding resonance energy $E_R = 0.01 \text{ MeV}$

Cosmological bound is satisfied

Dependence of the effective mass on density and energy

 $m_{eff}(z) \sim [\xi (1 + z)^3]^{1/2} m_{eff}(loc)$

where $1/\xi \sim 10^5\,$ - local (near the Earth) over-density of the background

In the epoch of matter-radiation equality, z = 1000, DM should already be formed and structures start to form.

For m_{eff} (loc) = 0.05 eV and $1/\xi \sim 10^5$ $\implies m_{eff}$ (1000) $\sim 5 eV$ - violates cosmological bound on the sum of neutrino masses

For not very small $E_{\rm R}\,$ one should take into account dependence (decrease) of $m_{eff}\,(loc)$ with neutrino energy

$$\Delta m_{eff}^{2}(E) \sim \frac{y(y-\varepsilon)}{y^{2}-1} \Delta m^{2} \qquad y = E/E_{R}$$

and for relic neutrinos m_{eff} (loc) can be very small