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Motivating Quantum Chaos
...why you may not want to go to sleep immediately!

Why study quantum chaos?
→→→ understand properties of q-systems closer to the real world,

eventually
→→→ make better quantum technologies in future
→→→ connections to other phenomena in physics (BHs, RMT, TPTs,

cosmology, neutrino oscillations etc)
→→→ interesting in its own right

First hurdle : how to define quantum chaos?
→→→ use notions of classical chaos and then invoke the

correspondence principle (OTOCs, SFF etc)
→→→ come up with unique, perhaps quantum-only, probes of

quantum chaos (EE, ...??? )
→→→ best : Wigner statistics / RMT-like behavior / level repulsion,

not-so-easy to compute (in many cases) + doesn’t always work
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Classical Chaos

∃ a number of probes of classical chaos : phase space trajectory
evolution, energy level correlation behavior, S/G-ALI etc.
phase-space-trajectory-divergence probe (valid for intermediate
times) breaks down in some cases (cue blackboard, billiards with
hole etc)

Figure: Exponential divergence of trajectories is a classical signature
of onset of chaos
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Quantum Chaos : Why Complexity?
The central object in this talk is ‘Quantum Complexity’.
Historically, introduced in HEP as a means to investigate BH
dynamics and study holography or AdS/CFT correspondence.
What can you do using quantum complexity?

→→→ study holography
→→→ study quantum chaos (alternative to OTOCs, SFF etc.)
→→→ study quantum circuits
→→→ study early universe cosmology

Recently, Jared Lichtman, used a similar notion to assist in his
proof of the Erdős primitive set conjecture. The notion he used
is to associate a number quantifying the size (or difficulty) of
every primitive set.
All this is to say that quantum complexity is an idea powerful &
useful enough to warrant further study.
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What is Complexity?

Roughly speaking, complexity measures the difficulty of
performing a task e.g. going from home to work.
How does one adapt this idea to quantum mechanics? In QM
we work with the ℋ and the operators that act on them. So an
easy adaptation of complexity to QM can be through computing
complexity of states and operators.
Different notions of quantum complexity -

→→→ Nielsen complexity : |state1⟩ → |state2⟩
→→→ Krylov complexity : 𝒪(0) → 𝒪(𝑡)
→→→ Spread complexity : Krylov complexity but for states
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Nielsen Complexity

Nielsen complexity measures, by use of unitary operations, how
difficult it is to prepare a target state starting from a reference
state.
This is typically done by considering the Fubini-Study metric on
ℋ.
One constructs a quantum-circuit on the ℋ from target state to
reference state and measures the minimum depth of this circuit
(upto some tolerance 𝜖) - this defines the Nielsen geometric
complexity of the circuit.
The evolution is performed through a choice of suitable unitary
operator. How this choice is made remains an open question.
One works with what one is interested in or finds tractable.
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Interlude : Krylov Subspace

Krylov complexity measures the growth of an operator through a
quantum system. One may ask, what has this got to do with
the “difficulty of a task” definition. Both are essentially same -
they quantify a task by assigning a value to it & drawing
conclusions thereby. One may tweak the explicit definition to
suit specific goals but essentially the idea remains same.
By “growth of an operator” one means how much an operator
has spread through the system e.g. introducing a virus in a
population like this.
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Interlude : Krylov Subspace

One can see that 𝒪(𝑡) = 𝒪 − 𝑖𝑡[𝐻, 𝒪] + (−𝑖𝑡)2

2! [𝐻, [𝐻, 𝒪]] + ⋯
The terms in red hint at a structure if one defines a
super-operator, Liouvillian : ℒ = [𝐻, .]. So, 𝒪(𝑡) = 𝑒−𝑖𝑡ℒ𝒪.
𝒪(𝑡) is a linear combination of operators in the subspace :
Span{ 𝒪⏟

≡ℒ0𝒪
, [𝐻, 𝒪]⏟

≡ℒ𝒪
, [𝐻, [𝐻, 𝒪]]⏟⏟⏟⏟⏟

≡ℒ2𝒪
, ⋯} ≡ 𝒦, the Krylov subspace.

As time grows, the operator is said to become more complex or
that it has grown because more and more commutators will
become significant. Hence, the Krylov subspace method can be
used to study operator growth and chaos in a quantum
mechanical system.
𝐾 ≤ 𝐷2 − 𝐷 + 1 is the bound on the Krylov space dimension
which is almost the size of the Hilbert space i.e. 𝐷2.
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Interlude : Lanczos Algorithm

Notice that the 𝒦 is not orthogonal. It is much easier to work
with orthonormal bases → Lanczos algorithm ≡ Gram-Schmidt
but for operators.
Define an inner product for operators :
(𝒜, ℬ) = 1

𝐷Tr (𝒜†, ℬ) ; ||𝒜|| = 1
𝐷Tr (𝒜†, 𝒜)

→→→ the choice of this inner product happens to be pretty important
Algorithm : (assuming Hermitian operator 𝒪 and a Hamiltonian
𝐻)

→→→ set 𝒪0 = 𝒪
||𝒪||

→→→ 𝒜1 = [𝐻, 𝒪0] ; 𝑏1 = ||𝒜1|| ; 𝒪1 = 𝒜1
𝑏1→→→ For 𝑛 > 1 do :

−−− 𝒜𝑛 = [𝐻, 𝒪𝑛−1] − 𝑏𝑛−1𝒪𝑛−2 : Lanczos Step
−−− 𝑏𝑛 = ||𝒜𝑛||
−−− if 𝑏𝑛 = 0 stop ; else 𝒪𝑛 = 𝒜𝑛

𝑏𝑛
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−−− if 𝑏𝑛 = 0 stop ; else 𝒪𝑛 = 𝒜𝑛

𝑏𝑛
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Interlude : Lanczos Algorithm
We get :

→→→ Krylov basis : {𝒪0, 𝒪1, ⋯ , 𝒪𝐾−1}
→→→ Lanczos Sequence : {𝑏1, 𝑏2, ⋯ , 𝑏𝐾−1} where 𝐾 is the

dimension of the Krylov space
Comments :

→→→ The set {𝒪𝑛}𝐾−1
𝑛=0 is orthonormal : (𝒪𝑛, 𝒪𝑚) = 𝛿𝑛𝑚.

→→→ The Krylov basis is ordered according to the number of nested
commutators with 𝐻.

→→→ The Liouvillian is tridiagonal in the Krylov basis i.e. the matrix
(𝒪𝑚|𝐿|𝒪𝑛) is tridiagonal.

→→→ The algorithm terminates once all directions in Krylov space are
exhausted.

→→→ The algorithm suffers from numerical instability at finite
precision since numerical error accumulates leading to the set
{𝒪𝑛} not really being orthonormal.
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Interlude : Time Evolution on the Krylov Basis

The operator’s time evolution can be described by its motion
along the Krylov basis : 𝒪(𝑡) = ∑𝐾−1

𝑛=0 𝑖𝑛 𝜙𝑛(𝑡) 𝒪𝑛.
This can be seen as expanding the time dependent operator over
the Krylov basis.
𝑖𝑛 makes all the terms Hermitian since operators in the Krylov
basis alternate between Hermitian & anti-Hermitian.
Heisenberg time-evolution equation 𝑑

𝑑𝑡𝒪(𝑡) = 𝑖[𝐻, 𝒪(𝑡)] gives :

̇𝜙𝑛(𝑡) = 𝑏𝑛𝜙𝑛−1(𝑡) − 𝑏𝑛+1𝜙𝑛+1(𝑡) ←− tridiagonal ℒ.

𝜙𝑛(0) = 𝛿𝑛0 ∶ initial condition that at 𝑡 = 0 all support is on 𝒪0.
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Interlude : Time Evolution on Krylov Basis

Comments :
→→→ The condition 𝜙𝑛(0) = 𝛿𝑛0 ensures that 𝒪(0) = 𝒪0.
→→→ The dynamics of the operator along the Krylov basis depend

solely on 𝑏𝑛 i.e. {𝑏𝑛; ∀ 𝑛 ∈ [1, 𝐾 − 1]} characterizes the
operator evolution.

→→→ One can think of 𝜙𝑛(𝑡) as wavefunctions in the 𝒦-basis : 𝜙𝑛(𝑡)
is the time independent projection of 𝒪(𝑡) on the Krylov basis
element 𝒪𝑛. 𝜙𝑛(𝑡) are typically called complexity
wavefunctions.

→→→ ∑𝑛 |𝜙𝑛(𝑡)|2 = 1 ∀ 𝑡
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Krylov Complexity

𝐾-complexity is a probe of time-dependent profile of 𝜙𝑛(𝑡) :
→→→ 𝐾-complexity = average position on the Krylov chain :

𝐶𝐾(𝑡) =
𝐾−1
∑

𝑛=0
𝑛 |𝜙𝑛(𝑡)|2

𝐾-complexity is bounded, by definition, by the Krylov space
dimension since the average position on the chain cannot be
greater than the length of the chain itself.
𝐾-complexity depends only on the Hamiltonian of the system
and a seed operator 𝒪. It also depends on making a correct
choice for the inner product class.
Pro vs Nielsen Complexity : no tolerance or dependence on
choice of gates/unitaries → less ambiguities.
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Spread Complexity

One can use the Krylov subspace methods to compute
complexity of a state.
General quantum state : |Ψ(𝑠)⟩ = 𝑒𝑖𝐻𝑠 |Ψ0⟩, 𝑠 : circuit time.
We can define a notion of complexity by quantifying the spread
of state |Ψ(𝑠)⟩ through ℋ with reference to |Ψ0⟩.
Spread complexity of |Ψ(𝑠)⟩ is estimated by the minimum over
all choice of the bases ℬ = {|𝐵𝑛⟩ , 𝑛 = 0, 1, 2, … ∣ |𝐵0⟩ = |Ψ0⟩}
of the cost function :

𝒞(𝑠) = min
ℬ

(∑
𝑛

𝑛 |⟨Ψ(𝑠) | 𝐵𝑛⟩|2) → ∑
𝑛

𝑛 |𝜙𝑛(𝑠)|2

It has been shown that the minimum over ℬ is achieved when
we have the Krylov basis.
Pro : one gets to work with states & can draw parallels with the
Nielsen complexity, if desired.
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Proposal
Proposal : complexity may be an efficient probe of topological
phase transitions (TPTs).
Why should one invest time to investigate this proposal? While
this idea may seem way out there from the definition of
complexity, there is some merit and motivation to such a study.
The motivation I shall clarify right away and the merit, I hope to
make apparent by the end of this talk.
Motivation : TPTs, by definition, are accompanied by
gap-closing i.e. level statistics play a role in determining TPTs.
Since Krylov basis is constructed out of a super-operator which
is a function of 𝐻 - it can be expected that Krylov basis
encodes information about level statistics. So, it is natural to
expect spread complexity to be sensitive to TPTs.
Level repulsion is a characteristic of chaotic systems & one may
expect spread complexity to be sensitive to quantum chaos too.
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Kitaev Chain : The Model
Now that we are convinced that this idea is tractable we need a
“playing field”. Of course, we’d prefer to find a nice & easy
playing field so as to not get lost in the details and focus on the
proposal.
We take a prototypical model which shows topological phase
transitions (TPTs) : the Kitaev Chain. This model has proven
to be the harmonic oscillator of topological studies in the sense
that this simple model elucidates ideas that go beyond itself.
The Kitaev Chain Hamiltonian is,

𝐻𝐾 =
𝐿

∑
𝑗=1

[ − 𝐽
2 (𝑐†

𝑗𝑐𝑗+1 + 𝑐†
𝑗+1𝑐𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟

hopping terms

− 𝜇 (𝑐†
𝑗𝑐𝑗 − 1

2)⏟⏟⏟⏟⏟⏟⏟
chemical potential

+ Δ
2 (𝑐†

𝑗𝑐†
𝑗+1 + 𝑐𝑗+1𝑐𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

p-wave superconducting term

].
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Kitaev Chain : The Model

Trivial phase : |𝜇| > |𝐽| - unique GS independent of BC.
Topological phase : |𝜇| < |𝐽| - ∃ Majorana zero modes.
Interesting connections elucidating wide ranging applications :

→→→ if Δ, 𝐽 > 0 a JW transformation connects Kitaev & transverse
Ising chain

→→→ for Δ = 0, 𝐻Kitaev → 𝐻𝑋𝑋 ≡ isotropic limit of 𝑋𝑌 model
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Formalism
Step 1 : diagonalize the 𝐻𝐾 through BdG formalism i.e. Fourier

transform 𝑐𝑗, 𝑐†
𝑗 .

Step 2 : recast 𝐻BdG as
𝐻BdG = ∑

𝑘
[2𝑅3𝐽 (𝑘)

0 + 𝑖𝑅1 (𝐽 (𝑘)
+ − 𝐽 (𝑘)

− )].

Step 3 : realize that 𝐻BdG belongs to the 𝔰𝔲(2, ℭ)𝔰𝔲(2, ℭ)𝔰𝔲(2, ℭ) algebra.
Step 4 : construct 𝔰𝔲(2, ℭ)𝔰𝔲(2, ℭ)𝔰𝔲(2, ℭ) coherent state basis

{|𝑧⟩ ∼ 𝑒𝑧𝐽+ |0⟩ , ∀ 𝑧} which diagonalizes 𝐻𝐾.
Step 5 : choose reference state (|𝑧𝑟⟩) and target state (|𝑧𝑡⟩).
Step 6 : calculate complexity of spread of 𝑧𝑡 from 𝑧𝑟 (or

vice-versa) using 𝐶 = 𝑧𝑟𝜕𝑧𝑟
log (𝑧𝑡|𝑧𝑟).

Of course, this masks some of the subtleties like dealing with
BCs and odd/even number of sites, but this is roughly a
formalism one can employ to calculate spread complexity quickly
for the cases when the 𝐻 is part of a Lie algebra.
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Results

Figure: The spread complexity in the continuum limit for the circuit
connecting the free fermion ground state to the Kitaev chain ground
state. We have chosen 𝐽 = 1. When |𝜇| < 1 the system is in the
topological phase and the spread complexity is a Δ-dependent constant.
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Results
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Δ
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0.3

C'(Δ)

Figure: The derivative of spread complexity with respect to Δ (continuum
limit) for the circuit connecting the free fermion GS and Kitaev chain GS.
We have 𝐽 = 1, 𝜇 = 0.98, 𝜇 = 1.02, 𝜇 = 1.1. When crossing the TPT
points at |𝜇| = 1 the derivative develops a discontinuity.
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Discussion & Outlook
We have shown that, conservatively speaking, spread complexity
is a sensitive and efficient of TPTs for the Kitaev Chain - at
least.
Furthermore, we have done so by considering three different
circuits demonstrating that spread complexity is robustly
sensitive.
The formalism relies on being able to associate the 𝐻 to a Lie
algebra. If not, this formalism breaks down. Currently, this
formalism is the only one that has been used to study sensitivity
of spread complexity to TPTs.
A simple case in which to look for alternative methods is given
by the Kitaev chain itself in the form of TBC case. TBC breaks
translation invariance and hence one cannot follow BdG
formalism which relies on Fourier transformation to diagonalize
the 𝐻.
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Discussion & Outlook

Fluctuations diverge at quantum critical points and one may
expect the complexity of a quantum state, say the GS, to do so
too. In our work we have made an attempt to explore this
notion and add to an ever growing list of literature.
The critical points may correspond to different classes of phase
transitions like the conventional PTs, BKT PTs and deconfined
critical points. It would be interesting to see if complexity is
sensitive to such phase transitions too.
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