# Probing the connection between short gamma ray bursts and binary coalescing systems through gravitational waves

Luyanda Mazwi

Supervisor Prof. Soebur Razzaque Co-supervisor Mr Lutendo Nyadzani

21/04/2023

# Table of Contents

- 1 Motivation for study
- 2 The Hypothesis
- 3 Gravitational waves
- 4 Analysing detector data
- 5 Methodology
- 6 Discussion and conclusion

### Motivation for study



Figure: Fermi GBM light curve of GRB170817A above a time frequency map of GW170817 generated from LIGO Hanford and Livingston. A joint detection rate of 0.1 - 1.4  $\rm yr^{-1}$  between LIGO and Fermi GBM was predicted. At LIGO's design sensitivity this climbed to 0.3 - 1.7  $\rm yr^{-1}data.[1]$ 

### Motivation for study

- To date, the events of GW170817/GRB170817A has been the only joint detection of its kind so far.
- During LIGOS 2nd and 3rd observing runs O2 and O3, a second BNS merger GW190425 and Black Hole Neutron Star (BHNS) mergers GW200115\_042309, GW200210\_092254, GW190917\_114636 were detected[2]. All of these events could be possible sources for a GRB. No EM counterpart for these events were detected.
- This study aims to find an explanation for the lack of joint detections through the O2 and O3 runs.

The Hypothesis

## The Hypothesis



#### Gravitational waves

 Gravitational waves are travelling perturbations in spacetime caused by the acceleration of massive bodies. General relativity predicts the existence of 2 tensor polarisation modes:

$$h_{+}(t) = -\frac{1+\cos^{2}\iota}{2} \left(\frac{\mathcal{G}\mathcal{M}}{c^{2}D}\right) \left(\frac{t_{c}-t}{5\mathcal{G}\mathcal{M}/c^{3}}\right)^{-1/4} \cos(2\phi_{c}-2\phi(t-t_{c};M,\mu))$$

$$h_{\times} = -\cos\iota\left(\frac{\mathcal{G}\mathcal{M}}{c^2 D}\right) \left(\frac{t_c - t}{5\mathcal{G}\mathcal{M}/c^3}\right)^{-1/4} \sin(2\phi_c + 2\phi(t - t_c; M, \mu))$$

• The GW strain as seen by a particular detector is given by

$$h(t) = h_{+}(t - t_{c} - t_{0})F_{+}(\alpha, \delta, \Psi, t) + h_{\times}t - t_{c} - t_{0})F_{\times}(\alpha, \delta, \Psi, t)$$
(1)

<sup>1</sup>reference [3]

#### Gravitational waves

■ For short duration signal  $F_+$  and  $F_{\times}$  are nearly constant. The GW strain seen by a particular detector can then be written as

$$h(t) = -\left(\frac{\mathcal{G}\mathcal{M}}{c^2 D_{eff}}\right) \left(\frac{t_0 - t}{5\mathcal{G}\mathcal{M}/c^3}\right)^{-1/4} \cos(2\phi_0 + 2\phi(t - t_0; M, \mu))$$
(2)

•  $\phi_0$  is the termination phase which is given by the relation

$$2\phi_0 = 2\phi_c - \arctan\left(\frac{F_{\times}}{F_+}\frac{2\cos\iota}{1+\cos^2\iota}\right) \tag{3}$$

 $\blacksquare$  and  $D_{eff}$  is the effective distance given by

$$D_{eff} = D \left[ F_{+}^{2} \left( \frac{1 + \cos^{2} \iota}{2} \right)^{2} + F_{\times} \cos^{2} \iota \right]^{-1/2}$$
(4)

<sup>2</sup>reference [3]

Analysing detector data

#### Analysing detector data



Figure: Gravitational waveform templates used in this study

#### Bayes theorem

For a set of observations d = (d<sub>1</sub>,....,d<sub>n</sub>) and set of unknown parameters θ = (θ<sub>1</sub>,....,θ<sub>n</sub>), the probability density of the values of θ given the data d is given by:

$$p(\boldsymbol{\theta}|\mathbf{d}) = \frac{L(\mathbf{d}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\mathcal{Z}} = \frac{L(\mathbf{d}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\int L(\mathbf{d}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})d\boldsymbol{\theta}}$$
(5)

- where  $L(\mathbf{d}|\boldsymbol{\theta})$  is the likelihood function of  $\mathbf{d}$  given  $\boldsymbol{\theta}$ .  $\pi(\boldsymbol{\theta})$  is the prior probability density functions and  $\mathcal{Z}$  is the marginalised likelihood.
- By choosing a likelihood, a model for the GW is implicitly chosen. For example, a Gaussian likelihood for GW astronomy is given by

$$L(\mathbf{d}|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(\mathbf{d}-h(\boldsymbol{\theta})^2)}{\sigma^2}\right)$$
(6)

<sup>3</sup>reference [4]

## Methodology

- For this study we performed Bayesian inference on the following GW events: GW170817, GW190425 (BNS events), GW190917\_114636, GW200210\_092254, GW2000115\_042309 (BHNS events)
- We perform Bayesian inference using Bilby which is python based Bayesian inference library for GW astronomy [5]
- GW170817 has an observed EM counterpart GRB170817A. As a result, the inclination angle is well constrained. To test how effective pure GW analysis is using Bilby, we aim to obtain similar values for the inclination angle through pure GW analysis.
- In order to perform Bayesian analysis, we define a prior giving the distribution of the waveform parameters. Following convention, we set up two priors that represent a low spin and high spin case for the merger.

Methodology

# GW170817: Results (TaylorF2\_Lowspin)



#### GW190425

- This is a BNS mereger detected by a single detector (Livingston). The Hanford detector was offline during the event
- Component masses are  $m_1 = 2.1 \pm \substack{0.5\\0.4}$  M<sub> $\odot$ </sub> and  $m_2 = 1.3 \pm \substack{0.3\\0.2}$
- No trigger in the Virgo detector
- To analyse this event, the same set of waveform templates used on GW170817 were utilised(TaylorF2,IMRPhenomP,IMRPhenomD).
- $\blacksquare$  2 different low spin case priors were used with one having a uniform distribution between  $0^\circ$  and  $90^\circ$
- For the high spin case a uniform distribution between 0° and 180° was chosen.

### GW200115 and GW190917

- GW200115\_042309 and GW190917 are BHNS events detected all through the LVC network with component masses.
- To analyse the signal a high or low spin prior case was not considered. Instead we considered a case of precessing spins with no consideration for tidal deformities in the neutron star.
- In this study we only made use of the gravitational waveform IMRPhenomP which is a waveform template that allows spin precession
- A new prior accommodating spin precession as well as the distance considerations was then set up

## Summary of results

| Gravitational wave | Waveform     | $\mathcal{M}~(M_{\odot})$    | mass ratio             |
|--------------------|--------------|------------------------------|------------------------|
| GW170817           | IMRPhenomP   | $1.20^{+0.0}_{-0.0}$         | $0.83^{+0.11}_{-0.11}$ |
|                    | TaylorF2     | $1.19\substack{+0.0\\-0.0}$  | $0.42_{-0.03}^{+0.17}$ |
|                    | IMRPhenomD   | $1.20^{+0.0}_{0.0}$          | $0.83^{+0.11}_{-0.11}$ |
|                    | LIGO result  | 1.19                         | (0.4, 0.8)             |
| GW190425           | IMRPhenomP   | $1.47^{+0.02}_{-0.0}$        | $0.43^{+0.40}_{-0.05}$ |
|                    | TaylorF2     | $1.47^{+0.00}_{-0.03}$       | $0.45^{+0.39}_{-0.05}$ |
|                    | IMRPhenomD   | $1.47\substack{+0.02\\-0.0}$ | $0.45_{-0.06}^{+0.42}$ |
| GW190917           | IMRPhenomP   | $2.59^{+0.39}_{-0.17}$       | $0.33_{0.07}^{0.19}$   |
|                    | LIIGO Result | $3.7^{+0.2}_{-0.2}$          | -                      |
| GW200115           | IMRPhenomP   | $2.55_{-0.00}^{+0.01}$       | $0.34_{-0.12}^{+0.15}$ |
|                    | LIGO Result  | $2.43_{-0.07}^{+0.05}$       | -                      |

Table: Chirp Mass and mass ratios estimated for events GW170817, GW190425, GW190917, GW200115

## Summary of results

| Gravitational wave | Waveform    | Low spin                           | High spin                         |
|--------------------|-------------|------------------------------------|-----------------------------------|
| GW170817           | IMRPhenomP  | $155.28^{\circ}^{+15.99}_{-18.57}$ | $152.6^{\circ}^{+18.65}_{-16.01}$ |
|                    | TaylorF2    | $142.88^{\circ}^{+0.9}_{-0.8}$     | $152.41^{\circ +18.65}_{-15.82}$  |
|                    | IMRPhenomD  | $155.21^{\circ}^{+15.98}_{-18.56}$ | $155.57^{\circ+15.62}_{18.82}$    |
|                    | LIGO result | $146^{\circ}{}^{+25}_{-27}$        | $152^{\circ +21}_{-27}$           |
| GW190425           | IMRPhenomP  | $46.54^{\circ +28.96}_{-30.54}$    | $89.04^{\circ}_{-60.36}^{+63.11}$ |
|                    | TaylorF2    | $44.64^{\circ+29.94}_{-28.45}$     | $98.03^{\circ}^{+58}_{-63.39}$    |
|                    | IMRPhenomD  | $46.09^{\circ}_{-32.38}^{+30.65}$  | $87.95^{\circ}_{-63.11}^{+62.85}$ |
| GW190917           | IMRPhenomP  | $107.14^{\circ}_{67.18}^{+34.37}$  |                                   |
| GW200115           | IMRPhenomP  | $64.74^{\circ}_{-40}^{+63.59}$     |                                   |

Table: Inclination angles estimated for events GW170817, GW190425, GW190917, GW200115

## Discussions and conclusion

- The current set of results suggests that the binaries were orientated such that detection of the emitted GRB was not possible. The hypothesis still holds
- From existing joint detection predictions, 1 in 8 BNS mergers detected by the LVC network should have a GRB counterpart. Our current set of results is still in agreement with this prediction.
- Parameter degeneracies present the biggest challenges when it comes to parameter inference (e.g mass and spin degeneracy, luminosity distance and inclination angle degeneracy)
- to overcome these degeneracies, an independent observation of the parameter through a different messenger breaks the degeneracy
- In this study, without stricter constraints on either the luminosity distance or a smaller parameter space for the parameter of interest, reducing the uncertainty in the inferred value is not possible.

#### References I

- B.P Abbott et al. "Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A". In: The Astrophysical Journal Letters 848.2 (2017), p. L13.
- [2] GWTC event portal. Last accessed 19 April 2023. 2023. URL: https://gwosc.org/eventapi/html/GWTC/.
- B Allen et al. "FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries". In: Physical Review D 85.12 (2012), p. 122006.
- [4] Benjamin P Abbott et al. "A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals". In: Classical and Quantum Gravity 37.5 (2020), p. 055002.

#### References II

[5] G Ashton et al. "BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy". In: *The Astrophysical Journal Supplement Series* 241.2 (2019), p. 27.