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f(R,T) gravity

> f(R,T) gravity is a modified theory of gravition
> In 2011, Harko et al. [1] developed the f(R,T) gravity.
> f(R,T) gravity generalizes the f(R) gravity

The action for f(R,T) gravity is given as

1
S= 5 / V=8 [f(R.T) +2kLy,] d*x (1)
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Let us define the energy-momentum tensor as

T, = _ 2 6(\1_ng) (2)
ab \/_—g 5gab
Further, assume that the Lagrangian density L,, depends on the metric
tensor components g,p, and not on its derivatives. Thus we have

oL,,
agab

Tup = 8L, -2 (3)

Varying the action § as in (1) with respect to the metric components,
the modified field equations for f(R, T) gravity are expressed as

fR(R7 T)Rab - %f(Rv T)gab + (gabl:' - Vavb) fR(R7 T) -
Tap — fT(Ra T) (Tab + ®ab)

where

C))

65711[3 a é?zlL
_ — _ _ B m
Oub = &ap 5gab = 2Tap + abLm — 28 990 P
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For the matter Lagrangian L,, = —p we arrive at

®ab — _2Tab — P8ab (5)

Therefore, the modified field equations (4) finally take the form

fie(R.T)Rap = 5 F(R. T)ga + (8001~ VaVs) f(R.T) =
(1 + fT(R7 T)) Tab + pr(R’ T)gab

(6)

This field equations reduces to
> f(R) gravity field equations when f(R,T)=f(R)
> GR field equations when f(R,T)=f(R) = R
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In literature we found three forms of f(R,T) as
» f(R,T) =R+ h(T)
> f(R.T) = fi(R) + f2(T)
> f(R,T) = fi(R) + f2(R) f3(T)
f(R,T) =R+2h(T):
Gap = [1 4207 (T)[Tap + [2ph7(T) + h(T)18ab (7)

FR.T) = fi(R) + fo(T):
Gab = GoypTap + T 8)
where

1 /
Geff = m(l‘Ffz(T))

and

. 1 |1 , ,
Ta{:f = 7R 5 (1(R) = Rf{(R) + fo(T))8ab ~ (8abB = VaVp) f{(R)

f(R,T) = f1(R) + f2(R) f3(T):
[f{(R)+ f;(R) f3(T)|Rap — %fl (R)gab + (a0 = VaVp) [ f{ (R) + f5(R) f3(T)] =

(1+ AR F () Tap + 5 fo(R) (T8t
©
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Godel metric

» Godel [2] had proposed a stationary cosmological model with
rotation in the form (coordinates {¢, x, y, z}, a = constant).

1
ds* = a® |dt? — 2e*drdy + zezxdy2 — dx? — d7? (10)

» In the Godel’s model, the matter 1s described as dust with the
energy density p

» Cosmological constant A is nontrivial and negative

» The angular velocity w of the cosmic rotation in (10) is

) 1

Zﬁ:4ﬂ'Gp:—A (11)
a

w

G as Newton’s gravitational constant.
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The Godel metric (10) represents a particular case of a wider family of
stationary cosmological models described by

ds® = di* = 2\Joe"™ dtdy — (dx® + ke?™dy* + dz?)  (12)

here m > 0, o > Oand k are constant parameters. The line element
(12) 1s called the model with rotation of the Godel type.

> Godel [3] himself outlined a more physical expanding
generalizations of (10), although without giving explicit
solutions.

> Considerable numbers of exact and approximate models with
rotation and with or without expansion were developed

» Maitra [4] provided a cylindrically symmetric inhomogeneous
stationary dust-filled world with rotation and shear.

> Wright [5] presented inhomogeneous cylindrically symmetric
solution for dust plus cosmological term.
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> Schucking and Ozsvath [5, 6],discussed a series of paper dealing
with spatially homogeneous models with expansion, rotation and
shear

> however, that it is impossible to combine pure rotation and
expansion in a solution of the general relativity field equations
for a simple physical matter source, such as a perfect fluid

> There are two ways to overcome that difficulty: one should either
take a more general energy-momentum or to add cosmic shear

» The possibility of combining cosmic rotation with expansion was
the first successful step towards a realistic cosmology.

Now generalized model is obtained from (12) by introducing the
time-dependent scale factor R(?)

ds® = dt* —= 2NJoR(1)e™  dtdy — R(1)(dx* + ke dy? + d7°) (13)

The metric (13) is usually called the Godel type model with rotation
and expansion and also known as Godel-Obukhov line element.
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Investigated Problems

Problems

> Godel metric, known as a simplest metric allowing for the closed
time-like curves (CTCs) is compatible with this theory or not.

> Smallness of the Cosmological constant A

Let us consider the Godel metric in the form
1
ds®> = a® |di* — dx* + Eez’cdy2 — dz? +2e*dtdy|, (14)

where a is a positive number. The non-zero components of the Ricci
tensor for the Godel metric (14) are expressed as

2x X
Ry =€, Ry =Ryp=e",Raq = 1.

The Ricci scalar or scalar curvature R = g'/R;; is R = 1/a?.
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We consider the energy momentum tensor in the following form

Tij=(p+pluiuj+ (p+MN)gij, (15)

Here u is the unit vector along the ¢ line with u; = (a, 0, ae*,0), p, p
and A represent the energy density, pressure and cosmological
constant, respectively. The non-zero components of the energy
momentum tensor are

Ty =—(p +A)a’

3 A
Tn=(p+ 7p + E)azezx
T3z = —(p + A)a’ (16)

T = (p+2p+A)d’
Ty = (p + 2p + A)Clzex

The trace of the energy momentum tensor is expressed as
T =p+5p+4A.
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Solutions under various functional forms

Motivations:

>

Singh et al.[7] investigated the cosmological constant in f(R,T)
gravity by considering f(T) = uT? for the class

F(R,T) =R+ f(T).

Pettorino et al.[8] devoted their study to class of extended
quintessence cosmologies, in which scalar field act as dark
energy and coupled to the Ricci scalar exponentially.

Harko and Lobo [9] proposed the exponential dependence of
R+2Lm

Hilbert-Einstein action by replacing R with Ae™ &, where L,,
is the the matter Lagrangian.

Moraes et al.[10] discussed the 1ssue of cosmic acceleration in
f(R,T) =R + e gravity.

Godani and Samanta [11] presented the existence of a wormhole
solution in f(R,T) = R + 2a InT gravity, where « is a constant.
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Solution for h(T) = AT?

In this case, the modified field equations (6) take the form
Gab = [1 +4/1T]Tab +/1T[4p +T]gab (17)

The non-zero components of equation (17) for the Godel metric (14)
along with (16) are expressed as

1
—65Ap°+(-92A1—-181p — 1) p=32A?A-12A A p-1p*—-A = —

%)
1052 p2+(124 A1+ 661 p +3) p+32 A2A+44 A1 p+9 A p*+A+2 p = %
(19)
85Ap*+(108 AA+42p +2) p+32 A2A4+28 A A p+5 A p*+A+p = 2%2

(20)
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Let us assume that the universe is filled with a perfect fluid and for
simplicity, we choose the case in which the pressure is zero, i.e.,
p = 0. Thus the system of equations (18)-(20) reduce to

1
—32AA-12Adp-Ap*—A=— 21)
2a?
3
32A21+44A/1p+9ﬂp2+/\+2p:ﬁ (22)
a
1
32A2/l+28A/lp+5/lp2+A+p=ﬁ (23)
a

For A = 0, the system of equations (21)-(23) has a solution in the form

o= é and A = —2—;2. This solution reduces to the solution of Santos

[12] and Godel [3].
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For A # 0. With the removal of the A2 term from the system of equations, we now
have a single equation

1
4ﬂp2+U6Aﬁ+Dp:—3. (24)
a

This equation (24) has infinite solutions depending on p and/or A. Let us assume that

[13]
1

p =

a’(1+224)

is a solution of the equation. Then the corresponding cosmological constant is given
as

(25)

2+a*(1+22
L ) (26)
8(14+22)a?
o and A satisfy the field equations under the constraint 4 = — ‘i’:zz. Thus, these
quantity takes the form

= 27
P="55 (27)
and 5
-6
=22 (28)
8(a? - 2)

The relationship between the matter energy density and cosmological constant for
this model is expressed as
a’ -6
A= p (29)

16
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Solution for h(T) = AIn(T)

In this case the modified field equations (6) take the form
T +2A 2p+T1n(T)]
8ab

Gap = Tap +A4 (30)

T

The non-zero components of equation (30) for the Godel metric (14)
along with (16) are expressed as

5 4\
p 2”; = (p+5p+4A+20) (p+A)
a
—A2p+(p+S5p+4AN)In(p+5p+4A)] (31)
3 5 4 A 3 A
p+5p+ ):(p+5p+4A+2/l) p+—p+—
4q? 2 2

A
+§[2p+(p+5p+4A)ln(p+5p+4A)] (32)

=(p+5p+4A+20) (p+2p+A)

+AR2p+(p+5p+4AN)In(p+5p+4AN)] (33)
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For pressure is zero (p = 0), the system of equations (31)-(33) reduce
to

4A
p;—z = (p+AA+2DA-A (p+4N)In(p+4A)  (34)
a
3(p+4A A 21
HaN) _ vans2)(p+ D)+ 2 pranim(p+4an)
4a? 2) 2
(35)
4A
p;’z = (0+4A+22) (p+A) +1 (p+4A)In(p+4A) (36)
a
For A = 0, the system of equations (34)-(36) reduces to
4A
PR AN —Ap 37)
2a?
3(p+4A) , 9 ,
12 =2A +§Ap+p (38)
4A
PEoR AN 45Ap+p° (39)
2a?

Solution of the above system are (o, A) = { (é, _2%12) , (%’ _2_6112) }

and A = —%p.
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For A # 0 and the elimination of 4 (0 +4 A) In (p + 4 A) from the system of
equations, (34)-(36) reduce to a single equation

p+4A
2

=4Ap+21p+p° (40)
a

This equation has an infinite number of solutions depending on p and/or A. As a
result of using p in the form (25), we get p < 0 and A > 0, which represents
unrealistic behavior of the physical parameters. Therefore, let us assume that

1

P2+ “h

is a solution of (40) where k # 2 is a constant quantity which needs to be determined.
The corresponding cosmological constant has the form

247 (kA+1) -k

42
4a? (kA+1)k (*+2)
o and A satisfy the field equations (34)-(36) under the constraint
2a% +k
A= ¢ (43)

2a% (2m(3)+1)
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Therefore, the matter energy density p and cosmological constant A

will take the form
41n(%) +2

_ 44
P 4a%In(%) — k (4

2 _ 2y _
A (2a*> —k)In(2) — k (45)
(4a%In(%) - k)k

For this model, the relationship between the matter energy density and
the cosmological constant is as follows:

_(2a* = k)In(g) —k
A= @) +2k (46)

We have the restriction on the parameters k and a” as follows:

k 2 _ k| _1
k € (0,2) and (D) <a® < 2(2ln(%) +1) for the matter energy

density p > 0 and cosmological constant A < O.
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Solution for A(T) = Ae’

In this case the modified field equations (6) take the form
Gap = [1+22e" | Tap + 2e” [2p + 1] gab (47)

The non-zero components of equation (47) for the Godel metric (14)
along with (16) are expressed as

T3 =- (1 +2/lep+5p+4A) (p+A) —AePS5PHA 02 p 1) (48)
a

4a?

3p A\ A
(1 +2/lep+5p+4A) (p+ 71’ + 5)+§ep+5p+“(2p+ 1) (49)

2a?

(1 +2/lep+5p+4A) (P+2p+A)+2ePPPHA 24 1) (50)
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For pressure is zero (p = 0), the system reduces to

— :—(1+2/lep+4A)A—/lep+4A 51)
2a?
3 _ +4 A A A +4 A
— = (1 + 2/lep+4A) (p+A) + 1PN (53)
a
For A = 0, the system of equations (51)-(53) has solution
1 1
9/\ =\~
(P, ) (d2 2a2)

, which reduces to the solution of Santos [12] and Godel [3]
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For A # 0, the elimination of 2 eP** from the above system of equations (51)-(53)
reduces to a single equation

1
p (14220440 = = (54)
a
Following the above procedure we have the Solution
Sp— (55)
P2 d+20
1
A=- (56)
4a?2 (1+22Q)
These two parameters satisfy the field equations under the constraint A = — ﬁ.
Thus, p and A takes the form
2
= 57
i (57)
and .
AN=———7—— (58)
2(2a% - 1)

Based on this model, the matter energy density p and cosmological constant A are
related as

A=-7p (59)
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Concluding Remarks

» The modified field equations are developed for various trace dependent
functions 4 (T), including A(T) = AT?, h(T) = AIn(T), and h(T) = Ae’.

» For all the discussed forms of 4(T), the functional form f(R,T) = R+ 2h(T)
produced the same results as Santos [12] and Godel [3] for A = 0.

» For A # 0, the cosmological constant depends on the matter and geometry for
h(T) = AT? and h(T) = AIn(T), but only on the matter for A(T) = Ae’.

» The expressions in (28), (45) and (58) indicate the smallness of the
cosmological constant A depending on a followed by the prescribed A.

» It is noted that the A parameter is a small negative quantity and depends on a.
The parameter A lies in the interval —0.5 < 4 < —0.33 and —co < 4 < —0.5 for
h(T) = AT? and h(T) = Ae™, respectively. For the scenario 4(T) = A1n(T), the
range of A is determined by k. We will use k = 1 and a? € (0.36068, 1.2214)
as an example, so —1 < A4 < —0.59.

» In the considered form of i(T), we are able to find the solutions of the field
equations for Godel metric. Thus there is a possibility of arising the CTCs in

f(R,T) gravity.
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