$f(R, T)$ gravity and Gödel's Solution

Application of Quantum Information in Astrophysics and Cosmology BINAYA K.BISHI
Postdoctoral Research Fellow

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ZULULAND

April 26, 2023

Overview

$f(R, T)$ gravity
Gödel metric
Investigated Problems
Solutions under various functional forms
Solution for $h(T)=\lambda T^{2}$
Solution for $h(T)=\lambda \ln (T)$
Solution for $h(T)=\lambda e^{T}$
Concluding Remarks
References

$f(R, T)$ gravity

- $f(R, T)$ gravity is a modified theory of gravition
- In 2011, Harko et al. [1] developed the $f(R, T)$ gravity.
- $f(R, T)$ gravity generalizes the $f(R)$ gravity

The action for $f(R, T)$ gravity is given as

$$
\begin{equation*}
S=\frac{1}{2 k} \int \sqrt{-g}\left[f(R, T)+2 k L_{m}\right] d^{4} x \tag{1}
\end{equation*}
$$

Let us define the energy-momentum tensor as

$$
\begin{equation*}
T_{a b}=-\frac{2}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} L_{m}\right)}{\delta g^{a b}} \tag{2}
\end{equation*}
$$

Further, assume that the Lagrangian density L_{m} depends on the metric tensor components $g_{a b}$, and not on its derivatives. Thus we have

$$
\begin{equation*}
T_{a b}=g^{a b} L_{m}-2 \frac{\partial L_{m}}{\partial g_{a b}} \tag{3}
\end{equation*}
$$

Varying the action S as in (1) with respect to the metric components, the modified field equations for $f(R, T)$ gravity are expressed as

$$
\begin{align*}
& f_{R}(R, T) R_{a b}-\frac{1}{2} f(R, T) g_{a b}+\left(g_{a b} \square-\nabla_{a} \nabla_{b}\right) f_{R}(R, T)= \tag{4}\\
& T_{a b}-f_{T}(R, T)\left(T_{a b}+\Theta_{a b}\right)
\end{align*}
$$

where

$$
\Theta_{a b}=g_{\alpha \beta} \frac{\delta T_{\alpha \beta}}{\delta g^{a b}}=-2 T_{a b}+g_{a b} L_{m}-2 g^{\alpha \beta} \frac{\partial^{2} L_{m}}{\partial g^{a b} \partial g^{\alpha \beta}}
$$

For the matter Lagrangian $L_{m}=-p$ we arrive at

$$
\begin{equation*}
\Theta_{a b}=-2 T_{a b}-p g_{a b} \tag{5}
\end{equation*}
$$

Therefore, the modified field equations (4) finally take the form

$$
\begin{align*}
& f_{R}(R, T) R_{a b}-\frac{1}{2} f(R, T) g_{a b}+\left(g_{a b} \square-\nabla_{a} \nabla_{b}\right) f_{R}(R, T)= \tag{6}\\
& \left(1+f_{T}(R, T)\right) T_{a b}+p f_{T}(R, T) g_{a b}
\end{align*}
$$

This field equations reduces to

- $f(R)$ gravity field equations when $f(R, T)=f(R)$
- GR field equations when $f(R, T)=f(R)=R$

In literature we found three forms of $f(R, T)$ as

- $f(R, T)=R+h(T)$
- $f(R, T)=f_{1}(R)+f_{2}(T)$
- $f(R, T)=f_{1}(R)+f_{2}(R) f_{3}(T)$
$f(R, T)=R+2 h(T):$

$$
\begin{equation*}
G_{a b}=\left[1+2 h_{T}(T)\right] T_{a b}+\left[2 p h_{T}(T)+h(T)\right] g_{a b} \tag{7}
\end{equation*}
$$

$f(R, T)=f_{1}(R)+f_{2}(T):$

$$
\begin{equation*}
G_{a b}=G_{e f f} T_{a b}+T_{a b}^{e f f} \tag{8}
\end{equation*}
$$

where

$$
G_{e f f}=\frac{1}{f_{1}^{\prime}(R)}\left(1+f_{2}^{\prime}(T)\right)
$$

and

$$
T_{a b}^{e f f}=\frac{1}{f_{1}^{\prime}(R)}\left[\frac{1}{2}\left(f_{1}(R)-R f_{1}^{\prime}(R)+f_{2}(T)\right) g_{a b}-\left(g_{a b} \square-\nabla_{a} \nabla_{b}\right) f_{1}^{\prime}(R)\right]
$$

$f(R, T)=f_{1}(R)+f_{2}(R) f_{3}(T):$
$\left[f_{1}^{\prime}(R)+f_{2}^{\prime}(R) f_{3}(T)\right] R_{a b}-\frac{1}{2} f_{1}(R) g_{a b}+\left(g_{a b} \square-\nabla_{a} \nabla_{b}\right)\left[f_{1}^{\prime}(R)+f_{2}^{\prime}(R) f_{3}(T)\right]=$
$\left(1+f_{2}(R) f_{3}^{\prime}(T)\right) T_{a b}+\frac{1}{2} f_{2}(R) f_{3}(T) g_{a b}$

Gödel metric

- Gödel [2] had proposed a stationary cosmological model with rotation in the form (coordinates $\{t, x, y, z\}, a=$ constant).

$$
\begin{equation*}
d s^{2}=a^{2}\left(d t^{2}-2 e^{x} d t d y+\frac{1}{2} e^{2 x} d y^{2}-d x^{2}-d z^{2}\right) \tag{10}
\end{equation*}
$$

- In the Gödel's model, the matter is described as dust with the energy density ρ
- Cosmological constant Λ is nontrivial and negative
- The angular velocity ω of the cosmic rotation in (10) is

$$
\begin{equation*}
\omega^{2}=\frac{1}{2 a^{2}}=4 \pi G \rho=-\Lambda \tag{11}
\end{equation*}
$$

G as Newton's gravitational constant.

The Gödel metric (10) represents a particular case of a wider family of stationary cosmological models described by

$$
\begin{equation*}
d s^{2}=d t^{2}-2 \sqrt{\sigma} e^{m x} d t d y-\left(d x^{2}+k e^{2 m x} d y^{2}+d z^{2}\right) \tag{12}
\end{equation*}
$$

here $m>0, \sigma>0$ and k are constant parameters. The line element (12) is called the model with rotation of the Gödel type.

- Gödel [3] himself outlined a more physical expanding generalizations of (10), although without giving explicit solutions.
- Considerable numbers of exact and approximate models with rotation and with or without expansion were developed
- Maitra [4] provided a cylindrically symmetric inhomogeneous stationary dust-filled world with rotation and shear.
- Wright [5] presented inhomogeneous cylindrically symmetric solution for dust plus cosmological term.
- Schucking and Ozsvath [5, 6],discussed a series of paper dealing with spatially homogeneous models with expansion, rotation and shear
- however, that it is impossible to combine pure rotation and expansion in a solution of the general relativity field equations for a simple physical matter source, such as a perfect fluid
- There are two ways to overcome that difficulty: one should either take a more general energy-momentum or to add cosmic shear
- The possibility of combining cosmic rotation with expansion was the first successful step towards a realistic cosmology.
Now generalized model is obtained from (12) by introducing the time-dependent scale factor $R(t)$

$$
\begin{equation*}
d s^{2}=d t^{2}-2 \sqrt{\sigma} R(t) e^{m x} d t d y-R(t)\left(d x^{2}+k e^{2 m x} d y^{2}+d z^{2}\right) \tag{13}
\end{equation*}
$$

The metric (13) is usually called the Gödel type model with rotation and expansion and also known as Gödel-Obukhov line element.

Investigated Problems

Problems

- Gödel metric, known as a simplest metric allowing for the closed time-like curves (CTCs) is compatible with this theory or not.
- Smallness of the Cosmological constant Λ

Let us consider the Gödel metric in the form

$$
\begin{equation*}
d s^{2}=a^{2}\left[d t^{2}-d x^{2}+\frac{1}{2} e^{2 x} d y^{2}-d z^{2}+2 e^{x} d t d y\right] \tag{14}
\end{equation*}
$$

where a is a positive number. The non-zero components of the Ricci tensor for the Gödel metric (14) are expressed as

$$
R_{22}=e^{2 x}, R_{24}=R_{42}=e^{x}, R_{44}=1
$$

The Ricci scalar or scalar curvature $R=g^{i j} R_{i j}$ is $R=1 / a^{2}$.

We consider the energy momentum tensor in the following form

$$
\begin{equation*}
T_{i j}=(\rho+p) u_{i} u_{j}+(p+\Lambda) g_{i j}, \tag{15}
\end{equation*}
$$

Here u is the unit vector along the t line with $u_{i}=\left(a, 0, a e^{x}, 0\right), \rho, p$ and Λ represent the energy density, pressure and cosmological constant, respectively. The non-zero components of the energy momentum tensor are

$$
\begin{align*}
& T_{11}=-(p+\Lambda) a^{2} \\
& T_{22}=\left(\rho+\frac{3 p}{2}+\frac{\Lambda}{2}\right) a^{2} e^{2 x} \\
& T_{33}=-(p+\Lambda) a^{2} \tag{16}\\
& T_{44}=(\rho+2 p+\Lambda) a^{2} \\
& T_{24}=(\rho+2 p+\Lambda) a^{2} e^{x}
\end{align*}
$$

The trace of the energy momentum tensor is expressed as $T=\rho+5 p+4 \Lambda$.

Solutions under various functional forms

Motivations:

- Singh et al.[7] investigated the cosmological constant in $f(R, T)$ gravity by considering $f(T)=\mu T^{2}$ for the class $f(R, T)=R+f(T)$.
- Pettorino et al.[8] devoted their study to class of extended quintessence cosmologies, in which scalar field act as dark energy and coupled to the Ricci scalar exponentially.
- Harko and Lobo [9] proposed the exponential dependence of Hilbert-Einstein action by replacing R with $\Lambda e^{\frac{R+2 L_{m}}{\Lambda}}$, where L_{m} is the the matter Lagrangian.
- Moraes et al.[10] discussed the issue of cosmic acceleration in $f(R, T)=R+e^{T}$ gravity.
- Godani and Samanta [11] presented the existence of a wormhole solution in $f(R, T)=R+2 \alpha \ln T$ gravity, where α is a constant.

Solution for $h(T)=\lambda T^{2}$

In this case, the modified field equations (6) take the form

$$
\begin{equation*}
G_{a b}=[1+4 \lambda T] T_{a b}+\lambda T[4 p+T] g_{a b} \tag{17}
\end{equation*}
$$

The non-zero components of equation (17) for the Gödel metric (14) along with (16) are expressed as

$$
\begin{equation*}
-65 \lambda p^{2}+(-92 \Lambda \lambda-18 \lambda \rho-1) p-32 \Lambda^{2} \lambda-12 \Lambda \lambda \rho-\lambda \rho^{2}-\Lambda=\frac{1}{2 a^{2}} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
105 \lambda p^{2}+(124 \Lambda \lambda+66 \lambda \rho+3) p+32 \Lambda^{2} \lambda+44 \Lambda \lambda \rho+9 \lambda \rho^{2}+\Lambda+2 \rho=\frac{3}{2 a^{2}} \tag{19}
\end{equation*}
$$

$85 \lambda p^{2}+(108 \Lambda \lambda+42 \lambda \rho+2) p+32 \Lambda^{2} \lambda+28 \Lambda \lambda \rho+5 \lambda \rho^{2}+\Lambda+\rho=\frac{1}{2 a^{2}}$

Let us assume that the universe is filled with a perfect fluid and for simplicity, we choose the case in which the pressure is zero, i.e., $p=0$. Thus the system of equations (18)-(20) reduce to

$$
\begin{gather*}
-32 \Lambda^{2} \lambda-12 \Lambda \lambda \rho-\lambda \rho^{2}-\Lambda=\frac{1}{2 a^{2}} \tag{21}\\
32 \Lambda^{2} \lambda+44 \Lambda \lambda \rho+9 \lambda \rho^{2}+\Lambda+2 \rho=\frac{3}{2 a^{2}} \tag{22}\\
32 \Lambda^{2} \lambda+28 \Lambda \lambda \rho+5 \lambda \rho^{2}+\Lambda+\rho=\frac{1}{2 a^{2}} \tag{23}
\end{gather*}
$$

For $\lambda=0$, the system of equations (21)-(23) has a solution in the form $\rho=\frac{1}{a^{2}}$ and $\Lambda=-\frac{1}{2 a^{2}}$. This solution reduces to the solution of Santos [12] and Gödel [3].

For $\lambda \neq 0$. With the removal of the Λ^{2} term from the system of equations, we now have a single equation

$$
\begin{equation*}
4 \lambda \rho^{2}+(16 \Lambda \lambda+1) \rho=\frac{1}{a^{2}} \tag{24}
\end{equation*}
$$

This equation (24) has infinite solutions depending on ρ and/or Λ. Let us assume that [13]

$$
\begin{equation*}
\rho=\frac{1}{a^{2}(1+2 \lambda)} \tag{25}
\end{equation*}
$$

is a solution of the equation. Then the corresponding cosmological constant is given as

$$
\begin{equation*}
\Lambda=\frac{-2+a^{2}(1+2 \lambda)}{8(1+2 \lambda) a^{2}} \tag{26}
\end{equation*}
$$

ρ and Λ satisfy the field equations under the constraint $\lambda=-\frac{a^{2}+2}{4 a^{2}}$. Thus, these quantity takes the form

$$
\begin{equation*}
\rho=\frac{2}{a^{2}-2} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda=\frac{a^{2}-6}{8\left(a^{2}-2\right)} \tag{28}
\end{equation*}
$$

The relationship between the matter energy density and cosmological constant for this model is expressed as

$$
\begin{equation*}
\Lambda=\left(\frac{a^{2}-6}{16}\right) \rho \tag{29}
\end{equation*}
$$

Solution for $h(T)=\lambda \ln (T)$

In this case the modified field equations (6) take the form

$$
\begin{equation*}
G_{a b}=\left[\frac{T+2 \lambda}{T}\right] T_{a b}+\lambda\left[\frac{2 p+T \ln (T)}{T}\right] g_{a b} \tag{30}
\end{equation*}
$$

The non-zero components of equation (30) for the Gödel metric (14) along with (16) are expressed as

$$
\begin{align*}
\frac{\rho+5 p+4 \Lambda}{2 a^{2}} & =-(\rho+5 p+4 \Lambda+2 \lambda)(p+\Lambda) \\
& -\lambda[2 p+(\rho+5 p+4 \Lambda) \ln (\rho+5 p+4 \Lambda)] \tag{31}\\
\frac{3(\rho+5 p+4 \Lambda)}{4 a^{2}} & =(\rho+5 p+4 \Lambda+2 \lambda)\left(\rho+\frac{3 p}{2}+\frac{\Lambda}{2}\right) \\
& +\frac{\lambda}{2}[2 p+(\rho+5 p+4 \Lambda) \ln (\rho+5 p+4 \Lambda)] \tag{32}\\
\frac{\rho+5 p+4 \Lambda}{2 a^{2}} & =(\rho+5 p+4 \Lambda+2 \lambda)(\rho+2 p+\Lambda) \\
& +\lambda[2 p+(\rho+5 p+4 \Lambda) \ln (\rho+5 p+4 \Lambda)] \tag{33}
\end{align*}
$$

For pressure is zero ($p=0$), the system of equations (31)-(33) reduce to

$$
\begin{align*}
& \frac{\rho+4 \Lambda}{2 a^{2}}=-(\rho+4 \Lambda+2 \lambda) \Lambda-\lambda(\rho+4 \Lambda) \ln (\rho+4 \Lambda) \tag{34}\\
& \frac{3(\rho+4 \Lambda)}{4 a^{2}}=(\rho+4 \Lambda+2 \lambda)\left(\rho+\frac{\Lambda}{2}\right)+\frac{\lambda}{2}(\rho+4 \Lambda) \ln (\rho+4 \Lambda) \\
& \frac{\rho+4 \Lambda}{2 a^{2}}=(\rho+4 \Lambda+2 \lambda)(\rho+\Lambda)+\lambda(\rho+4 \Lambda) \ln (\rho+4 \Lambda) \tag{35}
\end{align*}
$$

For $\lambda=0$, the system of equations (34)-(36) reduces to

$$
\begin{gather*}
\frac{\rho+4 \Lambda}{2 a^{2}}=-4 \Lambda^{2}-\Lambda \rho \tag{37}\\
\frac{3(\rho+4 \Lambda)}{4 a^{2}}=2 \Lambda^{2}+\frac{9}{2} \Lambda \rho+\rho^{2} \tag{38}\\
\frac{\rho+4 \Lambda}{2 a^{2}}=4 \Lambda^{2}+5 \Lambda \rho+\rho^{2} \tag{39}
\end{gather*}
$$

Solution of the above system are $(\rho, \Lambda)=\left\{\left(\frac{1}{a^{2}},-\frac{1}{2 a^{2}}\right),\left(\frac{2}{a^{2}},-\frac{1}{2 a^{2}}\right)\right\}$ and $\Lambda=-\frac{1}{4} \rho$.

For $\lambda \neq 0$ and the elimination of $\lambda(\rho+4 \Lambda) \ln (\rho+4 \Lambda)$ from the system of equations, (34)-(36) reduce to a single equation

$$
\begin{equation*}
\frac{\rho+4 \Lambda}{a^{2}}=4 \Lambda \rho+2 \lambda \rho+\rho^{2} \tag{40}
\end{equation*}
$$

This equation has an infinite number of solutions depending on ρ and/or Λ. As a result of using ρ in the form (25), we get $\rho<0$ and $\Lambda>0$, which represents unrealistic behavior of the physical parameters. Therefore, let us assume that

$$
\begin{equation*}
\rho=\frac{1}{a^{2}(1+k \lambda)} \tag{41}
\end{equation*}
$$

is a solution of (40) where $k \neq 2$ is a constant quantity which needs to be determined. The corresponding cosmological constant has the form

$$
\begin{equation*}
\Lambda=\frac{2 a^{2}(k \lambda+1)-k}{4 a^{2}(k \lambda+1) k} \tag{42}
\end{equation*}
$$

ρ and Λ satisfy the field equations (34)-(36) under the constraint

$$
\begin{equation*}
\lambda=-\frac{2 a^{2}+k}{2 a^{2} k\left(2 \ln \left(\frac{2}{k}\right)+1\right)} \tag{43}
\end{equation*}
$$

Therefore, the matter energy density ρ and cosmological constant Λ will take the form

$$
\begin{gather*}
\rho=\frac{4 \ln \left(\frac{2}{k}\right)+2}{4 a^{2} \ln \left(\frac{2}{k}\right)-k} \tag{44}\\
\Lambda=\frac{\left(2 a^{2}-k\right) \ln \left(\frac{2}{k}\right)-k}{\left(4 a^{2} \ln \left(\frac{2}{k}\right)-k\right) k} \tag{45}
\end{gather*}
$$

For this model, the relationship between the matter energy density and the cosmological constant is as follows:

$$
\begin{equation*}
\Lambda=\frac{\left(2 a^{2}-k\right) \ln \left(\frac{2}{k}\right)-k}{\left(4 \ln \left(\frac{2}{k}\right)+2\right) k} \rho \tag{46}
\end{equation*}
$$

We have the restriction on the parameters k and a^{2} as follows: $k \in(0,2)$ and $\frac{k}{4 \ln \left(\frac{2}{k}\right)}<a^{2}<\frac{k}{2}\left(\frac{1}{2 \ln \left(\frac{2}{k}\right)}+1\right)$ for the matter energy density $\rho>0$ and cosmological constant $\Lambda<0$.

Solution for $h(T)=\lambda e^{T}$

In this case the modified field equations (6) take the form

$$
\begin{equation*}
G_{a b}=\left[1+2 \lambda e^{T}\right] T_{a b}+\lambda e^{T}[2 p+1] g_{a b} \tag{47}
\end{equation*}
$$

The non-zero components of equation (47) for the Gödel metric (14) along with (16) are expressed as

$$
\begin{gather*}
\frac{1}{2 a^{2}}=-\left(1+2 \lambda \mathrm{e}^{\rho+5 p+4 \Lambda}\right)(p+\Lambda)-\lambda \mathrm{e}^{\rho+5 p+4 \Lambda}(2 p+1) \tag{48}\\
\frac{3}{4 a^{2}}=\left(1+2 \lambda \mathrm{e}^{\rho+5 p+4 \Lambda}\right)\left(\rho+\frac{3 p}{2}+\frac{\Lambda}{2}\right)+\frac{\lambda}{2} \mathrm{e}^{\rho+5 p+4 \Lambda}(2 p+1) \tag{49}\\
\frac{1}{2 a^{2}}=\left(1+2 \lambda \mathrm{e}^{\rho+5 p+4 \Lambda}\right)(\rho+2 p+\Lambda)+\lambda \mathrm{e}^{\rho+5 p+4 \Lambda}(2 p+1) \tag{50}
\end{gather*}
$$

For pressure is zero ($p=0$), the system reduces to

$$
\begin{gather*}
\frac{1}{2 a^{2}}=-\left(1+2 \lambda \mathrm{e}^{\rho+4 \Lambda}\right) \Lambda-\lambda \mathrm{e}^{\rho+4 \Lambda} \tag{51}\\
\frac{3}{4 a^{2}}=\left(1+2 \lambda \mathrm{e}^{\rho+4 \Lambda}\right)\left(\rho+\frac{\Lambda}{2}\right)+\frac{\lambda}{2} \mathrm{e}^{\rho+4 \Lambda} \tag{52}\\
\frac{1}{2 a^{2}}=\left(1+2 \lambda \mathrm{e}^{\rho+4 \Lambda}\right)(\rho+\Lambda)+\lambda \mathrm{e}^{\rho+4 \Lambda} \tag{53}
\end{gather*}
$$

For $\lambda=0$, the system of equations (51)-(53) has solution

$$
(\rho, \Lambda)=\left(\frac{1}{a^{2}},-\frac{1}{2 a^{2}}\right)
$$

, which reduces to the solution of Santos [12] and Gödel [3]

For $\lambda \neq 0$, the elimination of $\lambda \mathrm{e}^{\rho+4 \Lambda}$ from the above system of equations (51)-(53) reduces to a single equation

$$
\begin{equation*}
\rho\left(1+2 \lambda \mathrm{e}^{\rho+4 \Lambda}\right)=\frac{1}{a^{2}} \tag{54}
\end{equation*}
$$

Following the above procedure we have the Solution

$$
\begin{align*}
\rho & =\frac{1}{a^{2}(1+2 \lambda)} \tag{55}\\
\Lambda & =-\frac{1}{4 a^{2}(1+2 \lambda)} \tag{56}
\end{align*}
$$

These two parameters satisfy the field equations under the constraint $\lambda=-\frac{1}{4 a^{2}}$. Thus, ρ and Λ takes the form

$$
\begin{equation*}
\rho=\frac{2}{2 a^{2}-1} \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda=-\frac{1}{2\left(2 a^{2}-1\right)} \tag{58}
\end{equation*}
$$

Based on this model, the matter energy density ρ and cosmological constant Λ are related as

$$
\begin{equation*}
\Lambda=-\frac{1}{4} \rho \tag{59}
\end{equation*}
$$

Concluding Remarks

- The modified field equations are developed for various trace dependent functions $h(T)$, including $h(T)=\lambda T^{2}, h(T)=\lambda \ln (T)$, and $h(T)=\lambda e^{T}$.
- For all the discussed forms of $h(T)$, the functional form $f(R, T)=R+2 h(T)$ produced the same results as Santos [12] and Gödel [3] for $\lambda=0$.
- For $\lambda \neq 0$, the cosmological constant depends on the matter and geometry for $h(T)=\lambda T^{2}$ and $h(T)=\lambda \ln (T)$, but only on the matter for $h(T)=\lambda e^{T}$.
- The expressions in (28), (45) and (58) indicate the smallness of the cosmological constant Λ depending on a followed by the prescribed λ.
- It is noted that the λ parameter is a small negative quantity and depends on a. The parameter λ lies in the interval $-0.5<\lambda<-0.33$ and $-\infty<\lambda<-0.5$ for $h(T)=\lambda T^{2}$ and $h(T)=\lambda e^{T}$, respectively. For the scenario $h(T)=\lambda \ln (T)$, the range of λ is determined by k. We will use $k=1$ and $a^{2} \in(0.36068,1.2214)$ as an example, so $-1<\lambda<-0.59$.
- In the considered form of $h(T)$, we are able to find the solutions of the field equations for Gödel metric. Thus there is a possibility of arising the CTCs in $f(R, T)$ gravity.

References I

[1] T. Harko, F. S. Lobo, S. I. Nojiri, and S. D. Odintsov, $f(R, T)$ gravity, Phys. Rev. D, 84(2011) 024020.
[2] K. Gödel, An example of a new type of cosmological solutions of Einstein's field equations of gravitation, Rev. Mod. Phys., 21(1949). 447.
[3] K. Gödel, Rotating universes in general relativity theory, in: Proc. of Int. Congress of Mathematicians (Cambridge, USA, 1950), Eds. L.M. Graves, E. Hille, P.A. Smith, and O. Zariski, (American Math. Soc.: Providence, RI, 1952) v. 1, 175-181.
[4] S. Maitra, Stationary dust-filled cosmological solution with $\Lambda=0$ and without closed timelike lines, J. Math. Phys. 7 (1966) 1025-1030
[5] J.P. Wright, Solution of Einstein's field equations for a rotating, stationary, and dustfilled universe, J. Math. Phys. 6 (1965) 103-105.
[6] I. Ozsvath and E. Schucking, Finite rotating universe, Nature 193 (1962) 1168-1169.; An anti-Mach metric, in: Recent developments in general relativity (Pergamon: Oxford, 1962) 339-350; Ann. Phys. 55 (1969) 166- 204; J. Geom. Phys. 24 (1998) 303-333.
[7] G. P. Singh, B. K. Bishi, and P. K. Sahoo, Cosmological constant Λ in $f(R, T)$ modified gravity, Int. J. Geom. Methods Mod. Phys., 13 (2016) 1650058.
[8] V. Pettorino, C. Baccigalupi, and G. Mangano, Extended quintessence with an exponential coupling, J. Cosmol. Astropart. Phys., 2005 (2005) 014.

References II

[9] T. Harko, and F. S. Lobo, $f\left(R, L_{m}\right)$ gravity, Eur. Phys. J. C, 70 (2010) 373-379.
[10] P. H. R. S. Moraes, P. K. Sahoo, and S. K. J. Pacif, Viability of the $R+e^{T}$ cosmology, Gen. Relativ. Gravit., 52 (2020) 32.
[11] N. Godani, and G. C. Samanta, Static traversable wormholes in $f(R, T)=R+2 \alpha \ln T$ gravity, Chin. J. Phys., 62 (2019) 161-171.
[12] A. F. Santos, Gödel solution in $f(R, T)$ gravity, Mod. Phys. Lett. A, 28 (2012) 1350141.
[13] A. F. Santos, Gödel solution in $f(R, T)$ gravity, Mod. Phys. Lett. A, 28 (2013) 1350141.

THANK YOU

