An Introduction to Quantum Information
Assumed background:
Undergraduate teal space quantum Mechanics

1. Hilbert space basics - Dirac notation
2. Schrödinger time evolution
3. Hermitian and unitary operators.

Outline:

1. Motivations
2. Qubits and quantum logic gates
3. Density operators
4. Entanglement
5. The simplest quantum aigonitum: Deuich-Jozsa aigrocitum
6. Generalized measurements
7. Quantum key distribution (QKD)
8. CHSH inequality - Bell's theorem
9. The rotating frame
10. NMR

References:

1. Schumacher and Westmoveland - Quantum Processes, Systems, and Information
2. Michael Nielsen $\frac{1}{1}$ Isaac Chuang - Quantum Computation and Quantum Information.
3. Motivations:
4. Size of transistors shrinking $\sim 7 \mathrm{~nm}\left(7 \times 10^{-9} \mathrm{~m}\right)$. Comparable to size of atoms \sim $0.2 \mathrm{~nm}\left(2 \times 10^{-10} \mathrm{~m}\right)$ for a silicone atom. Quantum and thermal effects will limit the efficiency of next generation of transistors. To Keep up with Moore's law we may meed to go quantum.
5. Information Security: Many of our current eryptographic protocols safe-guard information against brute-force attacks by being based on NP-harel problems. Quantum algorithms exist that can cruck such protocols in polynomial time. Also quantum erpptographic protoeals offer better security against hacking. This is covered in QKD.
6. Simulations of quantum systems: Classical computers are not very efficient in simulating quantum systems. The dim of the Hilbert space of N two-level systems is 2^{N}. For $N=100$ such systems [common in many-body physics] the dim of the Hilbert space $\sim 2^{100} \approx 10^{30}$. Quantum processors would fore much better at simulating such a large state space.
7. Quantum church -Turing hypothesis:
(Classical) strong Church-Tuning Thesis: I probabilistic Turing machine can efficiently sinulate any model of classical computation.

Quantum strong Chuwch-Tuning Thesis: A quantum Turing machine can efficiently simulate any realistic model of computation.
5. Quantum algorithms
2. Qubits and quantum logic gates

Information in classical computers are encoded in strings of bits. Each bit can be -represented by a binary digit - 0 or 1. Complicated computer ciranits are male out of simpler logic gates such as NUT, AND, OR, NAND, XOR, NOR etc. NAND and NOR gates can be used to make amy other gate and so the set of NAND $\frac{1}{7}$ NOR is an example of a universal gates.

An example of a digital circuit:

An important observation about classical gates: They ate irreversible. Not $1-1$:
WAND:

Quantumbits (qubits) are two-level quantum systems. The two orthonormal basis states representing $0 \frac{1}{7} 1$ are written as $|0\rangle \frac{1}{9}|1\rangle$. Physical realization of a quit: a) spin dequee of freedom of a quantum particle
b) Two energy levels of a quantum state
c) Interferometer - photon/nentron travelling along an arm.

The set $\{|0\rangle,|1\rangle\}$ is called the computational basis. In contrast $t 0$ a classical computer quits have the following features:

1. A quit can be in an arbitrary superposition of $|0\rangle \frac{1}{1}|1\rangle$:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \text { with }|\alpha|^{2}+|\beta|^{2}=1 \text {. }
$$

2. Two or more quits can be in an entugled state. E.g. The state $\frac{|0\rangle|0\rangle+|1\rangle|1\rangle}{\sqrt{2}}$ can not be written as $|\psi\rangle|\phi\rangle$.

Much of the poser of quantum computers arise from these two features.
Often we shall represent $|0\rangle \frac{1}{9}|1\rangle$ in the computational basis:

$$
|0\rangle^{\prime \prime}="\binom{1}{0} \quad|1\rangle^{\prime \prime}="\binom{0}{1} \quad[\text { The matrix elements ate }\langle a \mid b\rangle]
$$

We shall henceforth drop the quotation marks.
Quantum logic gates are unitary operators that act on quits:

Examples of logic gates:

1. CNOT

CNOT defined
in terms of the
computational basis

The CNOT is a linear operator and it acts on an arbitrary two quit input by linearity: $|\Psi\rangle=\alpha|0\rangle|0\rangle+\beta|0\rangle|1\rangle+\gamma|1\rangle|0\rangle+\delta|1\rangle|1\rangle$ then CNOT acting on if will give $\left|\psi^{\prime}\right\rangle=\alpha|0\rangle|0\rangle+\beta|0\rangle|1\rangle+\gamma|1\rangle|1\rangle+\delta|1\rangle|0\rangle$.

Verify that in the computational basis CNOT is given by

$$
U_{+}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0
\end{array}\right)
$$

Other useful gates include
Control. Phase Gate:

of course single quit gates are also necessary:
Single quit phase gate:

$$
u_{\phi}^{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right) \cdot u_{\phi}|x\rangle=e^{i \phi x}|x\rangle
$$

$$
|x\rangle=4 \phi \quad e^{i x \phi}|x\rangle
$$

Hadamard Gate:

$$
\begin{aligned}
&\left.u_{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right): \quad \begin{array}{l}
u_{H}|0\rangle
\end{array}=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=1+\right\rangle \\
& u_{H}|1\rangle\left.=\frac{1}{\sqrt{2}}(|0\rangle-11\rangle\right)=1-1 .
\end{aligned}
$$

Since $u_{H}^{2}=1$, The Hadamard is its own inverse. The four gates $\left\{u_{+}, u_{\phi}^{(2)}, u_{\phi}^{(1)} \neq u_{H}\right\}$ form a universal set of quantum logic gates.

Exercise: If we use $\{|+\rangle,|-\rangle\}$ as our basis then show that in the CNOT gate given above the second quit acts as the control quit:

An important set of gates are the Pauli gates:

$$
\begin{aligned}
& X=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& Y=\sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right) \\
& Z=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Exercise: Show that $R_{x}(\theta)=e^{-i \theta x / 2}=(\cos \theta / 2) \cdot 11-i(\sin \theta / 2) x$

$$
\begin{aligned}
& R_{y}(\theta)=e^{-i y / 2}=(\cos \theta / 2) \cdot 1-i(\sin \theta / 2) y \\
& R_{z}(\theta)=e^{-i z / 2}=(\cos \theta / 2) \cdot 1-i(\sin \theta / 2) z
\end{aligned}
$$

3. Density Operators:

Consider a quantum system with A as an observable. If $\{|\alpha\rangle\}$ are the set of orltonormal eigenvectors: $\quad A|\alpha\rangle=\alpha|\alpha\rangle,\left\langle\alpha \mid \alpha^{\prime}\right\rangle=\delta_{\alpha \alpha^{\prime}}$

Then any measurement of A will yield one of its eigenvalues. According the spectral decomposition Theorem: $\quad A=\sum_{\alpha} \alpha|\alpha\rangle \alpha \mid$

If a system was in the state $|\psi\rangle$ when the measurement was made the probebility obtaining α is: $\quad P_{\psi}(\alpha)=|\langle\alpha \mid \psi\rangle|^{2}$

The expectation value of A for the state $|\psi\rangle$ is:

$$
\begin{aligned}
\langle A\rangle & =\sum_{\alpha} \alpha P_{\psi}(\alpha) \\
& =\sum_{\alpha} \alpha\langle\alpha \mid \psi\rangle\langle\psi \mid \alpha\rangle \\
& =\sum_{\alpha}\langle\alpha \mid \psi\rangle\langle\psi| \alpha|\alpha\rangle \\
& =\sum_{\alpha}\langle\alpha \mid \psi\rangle\langle\psi| A|\alpha\rangle \\
\langle A\rangle & =\operatorname{Tr}(|\psi\rangle\langle\psi| A)
\end{aligned}
$$

Now suppose we werent sure of what the state of the system was and it was given by a probability distribution: $\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots,\left|\psi_{n}\right\rangle\right\} \rightarrow$ completely arb. set of normalized states of the system with the prothability distribution $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ These p s have nothing to do with $P_{\psi}(\alpha)$ above. \rfloor

Then the expectation value of A is:

$$
\begin{aligned}
\langle A\rangle & =\sum_{i=1}^{n} p_{i}\left\langle\psi_{i}\right| A\left|\psi_{i}\right\rangle \\
& =\sum_{i=1}^{n} p_{i} \operatorname{Tr}\left(\left|\psi_{i}\right\rangle \not \psi_{i} \mid A\right) \\
& =\operatorname{Tr}\left(\sum_{i=1}^{n} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| A\right) \\
& =\operatorname{Tr}(\rho A)
\end{aligned}
$$

where $p \equiv \sum_{i=1}^{n} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ is the density matrix of The system whose 'state' is given by probability distribution of states given above. If only one $p=1$ and

There is only one state in p, i.e. $\rho=1 \psi \times 41$, in some basis, then we say it's a pure state. otherwise we say the state is mixed.

Properties of density operator:

1. P is a positive operator. All eigenvalues are positive semi-definite.
2. $\operatorname{Tr} p=1$.
3. If $p^{2}=\rho$ Then p is pure. $\Rightarrow \operatorname{Tr}\left(\rho^{2}\right)=1$. converse tome only in dim >3]

Examples:

1. $p=|0\rangle<0 \left\lvert\, \Rightarrow p=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right.$
2. $p=1+\rangle\left\langle+1=\frac{1}{2}\{|0\rangle+|1\rangle\}\{\langle 0|+\langle 1|\}=\frac{1}{2}\{|0\rangle\langle 0|+|1\rangle\langle 1|+|0\rangle\langle 1|+|1\rangle\langle 0|\}\right.$

$$
\Rightarrow \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

3. $p=\frac{1}{2}|0|<0\left|+\frac{1}{2}\right|\left|X_{1}\right|=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$1 \frac{1}{7} 2$ are pure states while 3 is mixed.
In d-dimensiens the density operator:

$$
\pi_{d}=\frac{1}{d} \mathbb{I}_{d}
$$

is kuron as the maximally mixed state.
Density matrix of a quantal system in an envionment at temperature T :

$$
\left.\rho_{\beta}=\frac{1}{Z} \sum_{n} e^{-H \beta}|n\rangle n \right\rvert\, \quad, \quad \beta=\frac{1}{K_{B} T}
$$

where $|n\rangle$ are The eigenstates of the Hamiltonian operator and $Z=\operatorname{Tr} e^{-H \beta}$. Some will recognize ρ_{β} as the quantum canonical ensemble.

Ex: Suppose you are given a collection of states which are a) either many copies of the state $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ or b) many copies of the state $|0\rangle$ or $|1\rangle$ drawn at
random using a fair coin. Is there a way distinguish between the two scenarios? If so devise an experiment to distinguish the two cases.

Ex: Show that the general state of a quit can be written as:

$$
|\theta, \varphi\rangle=\cos \frac{\theta}{2} \cdot|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle, 0 \leqslant \theta \leqslant \pi, 0 \leqslant \varphi<2 \pi
$$

and so a pure quit can be represented by the points on the surface of a unit sphere (Bloch Sphere).

We shall now show that the interior of the Bloch sphere represent all the mixed states of a quit.
Let $p \rightarrow$ general state of a quit. Since $p t=p \Rightarrow p=\left(\begin{array}{ll}a & c \\ c^{*} & b\end{array}\right)$ with $a, b \in \mathbb{R}$ But $\operatorname{Tr} \rho=1 \Rightarrow a+b=1$. Thus we can parametrize p by three real numbers.

Now $\operatorname{Tr} p=1 \Rightarrow p=\frac{1}{2}\left(I I+a_{x} x+a_{y} y+a_{z} y\right)$ and $\operatorname{Tr} p^{2} \leq 1 \Rightarrow$ $\bar{a}=a_{x} \hat{x}+a_{y} \hat{y}+a_{z} \hat{z}$ must have $|\bar{a}|^{2} \leqslant 1$.
\vec{a} is the called a Bloch rector and when $|\vec{a}|<1$ it represents a mixed state. $\vec{a}=0$ is represented by the centre of the Bloch ball and it is known as the maximally mixed state:

Note: $\left.\quad p=\frac{1}{2}\left|0 X\left(\left.0\left|+\frac{1}{2}\right| \right\rvert\, X 1\right)=\frac{1}{2}\right|+X+1+\frac{1}{2} \right\rvert\,-X-1$.
For amy mixed state \exists an infinite number of decomposition in terms of other mixed states. This is known as the ambiguity of mixtures.

Son Newman Entropy
A measure of the ambiguity of mixture is the son Neuman end tropy:
$S_{V N}=-\operatorname{Tr}(\rho \log \rho) \quad$ Base 2 when working with quits 1
where for $P_{i i}=0$ we define $P_{i i} \log P_{i i}=0$. For pure states $S=0$. For a maximally mixed state $\pi_{d}=\frac{1}{d} 1_{d}$ we get $S=-\operatorname{Tr}\left(\frac{1}{d} 1_{d} \log \pi_{d}\right)=\operatorname{Tr}\left(\frac{1}{d} \log d\right)$ $=\log d$. And so $0 \leqslant s \leqslant \log d$.

Son Nenmann entropy is part of an infinite tower of entropies known as Renyi entropies

$$
S_{\alpha}=\frac{1}{1-\alpha} \log \operatorname{Tr} p^{\alpha}, \alpha \geq 0 .
$$

As $\alpha \rightarrow 1 \quad s_{\alpha} \rightarrow S_{N N}$ using L'Hopital's rule and $\frac{d}{d \alpha} \rho^{\alpha}=\frac{d}{d \alpha} e^{\alpha \log \rho}=(\log p) \rho^{\alpha}$. ron Neumann entropy is a useful measure of bi-partite entanglement which we turn \hbar next.

Entanglement
If re have two quantum systems $A \notin B$ the combined system is described a tenso product thilbert space: $H_{A B}=H_{A} \otimes H_{B}$.
If $\left\{\left|\psi_{i}^{\wedge}\right\rangle\right\}$ and $\left\{\left|\phi_{m}^{B}\right\rangle\right\}$ are orthonormal bases on t_{A} and f_{B}. then the product states $\left|\psi_{i}^{A}, \phi_{m}^{B}\right\rangle=\left|\psi_{i}^{A}\right\rangle \otimes\left|\phi_{m}^{B}\right\rangle$ form an orthonormal basis on H्AB.

These are examples of product states but \exists states on $H_{A B}$ of The form: $\left|\Psi_{A B}\right\rangle=c_{1}\left|\psi_{1}^{A}, \phi_{1}^{B}\right\rangle+c_{2}\left|\psi_{2}^{A}, \phi_{2}^{B}\right\rangle+\cdots$ which may not be written in tim product form. Such states are called entangled states.

Example: For two quits the following states are examples of entangled states:

$$
\begin{aligned}
& \left|\Phi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|0,0\rangle \pm|1,1\rangle) \\
& \left|\Psi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|0,1\rangle \pm|1,0\rangle)
\end{aligned}
$$

These states are known as the Bell states and they are maximally entantangled.
Before we discuss about entanglement and how to quantify it let us give bit more background on tensor product.

The tensor product $\otimes: H_{A} \times H_{B} \rightarrow H_{A B}$ has the following properties:

1. If $|a\rangle \in H_{A} \frac{1}{9}|b\rangle \in H_{B}$ then $|a, b\rangle=|a\rangle \otimes|b\rangle \in H_{A B}$
2. Bilinearity: $|a\rangle \otimes\left(\beta_{1}\left|b_{1}\right\rangle+\beta_{2}\left|b_{2}\right\rangle\right)=\beta_{1}\left(|a\rangle \otimes\left|\beta_{1}\right\rangle\right)+\beta_{2}\left(|a\rangle \otimes\left|\beta_{2}\right\rangle\right)$
3. Any vector $|\psi\rangle \in \mathcal{H}_{A B}$ can be expressed as linear superposition of $\left|a_{\ell}\right\rangle \otimes \mid$ bm \rangle where $\left\{\left|a_{l}\right\rangle\right\}$ and $\left\{\left|b_{m}\right\rangle\right\}$ are orltwormal bases of $H_{A}{ }_{A} \mathcal{H}_{B}$ respectively.
4. The iuner-product on tl $A B$ is given by: $\left\langle\psi_{A}, \phi_{B} \mid \psi_{A}^{\prime} \phi_{B}^{\prime}\right\rangle=\left\langle\psi_{A} \mid \psi_{A}^{\prime}\right\rangle\left\langle\phi_{B} \phi_{B}^{\prime}\right\rangle$

Discussion on Tensor Product Structure:
By demanding that $H C_{A B}$ is also a thilbor space we introduce an enormous amout of structure into the tensor product. Here we enumerate some of these:

1. $\quad|a\rangle \otimes(\beta|b\rangle)=\beta(|a\rangle \otimes|b\rangle)=\langle\beta \mid a\rangle) \otimes|b\rangle\{$ Using bi-linearity $\}$
2. Suppose $\left|a_{1}\right\rangle \&\left|a_{2}\right\rangle \in H_{A}$ s.f. $\left\langle a_{1} \mid a_{2}\right\rangle=0$. Now consider $\left|a_{1}, b_{1}\right\rangle \quad \frac{1}{4}\left|a_{2}, b_{2}\right\rangle$ $\epsilon H_{A B} .\left\langle a_{1}, b_{1} \mid a_{2}, b_{2}\right\rangle=\left\langle a_{1} \mid a_{2}\right\rangle\left\langle b_{1} \mid b_{2}\right\rangle=0$ regardless of the value of $\left\langle b_{1} \mid b_{2}\right\rangle$.
3. Let $\left\{\left|a_{i}\right\rangle\right\}$ be an orthonormal basis for H_{A} and $\left\{\left|b_{m}\right\rangle\right\}$ an or Thonormal basis for H_{B}. Then $\left\{\left|a_{i}, b_{m}\right\rangle\right\}$ form an orthonormal basis for $\left.H\right|_{A B}:\left\langle a_{i}, b_{m} \mid a_{j}, b_{n}\right\rangle=\delta_{i j} \delta_{m n}$ This basis called the product basis for Hl $A_{A B}$.
4. If the dimensions of $H l_{A} \& H_{B}$ are $d_{A} \& d_{B}$, respectively then the dimension of $H_{A B}$ is dAd.
5. Extending linear maps on $H_{A} \& H_{B}$ onto $H_{A B}$: If $A(B)$ is a linear opotar for $A: H H_{A} \longrightarrow H_{A}\left(B: H_{B} \rightarrow H_{B}\right)$ then we can extend its action by defining

$$
A(|a\rangle \otimes|b\rangle)=(A|a\rangle) \otimes|b\rangle \quad[B(|a\rangle \otimes|b\rangle)=|a\rangle \otimes(B|b\rangle) .
$$

6. The product operator $A \otimes B$ is defined by:

$$
\begin{aligned}
& \quad(A \otimes B)(|a\rangle \otimes|b\rangle)=A|a\rangle \otimes B|b\rangle \\
& \left|a_{1}, b_{1}\right\rangle\left\langle a_{1}, b_{1}\right|= \\
& \left|a_{1}\right\rangle\left\langle a_{1}\right| \otimes\left|b_{1}\right\rangle b_{1} \mid
\end{aligned}
$$

Example 1: Constructing the Bell steites from product states: Consider:
Hadamard: $H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] . H|0\rangle=|1\rangle \frac{1}{7} H|1\rangle=|-\rangle$
CNOT: $\quad U_{+}|a, b\rangle=|a, a \oplus b\rangle \quad U_{+}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& |00\rangle=|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
& |10\rangle=|1\rangle \otimes|0\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Now consider the circuit:

So in the first step $(H \otimes \mathbb{I})|a, b\rangle=\frac{1}{\sqrt{2}}\left((-1)^{a}|a\rangle+|\bar{a}\rangle\right)|b\rangle$, where $\bar{a}=\operatorname{NOT}(a)$.

$$
=\frac{1}{\sqrt{2}}\left[(-)^{a}|a b\rangle+|\bar{a} b\rangle\right]
$$

Now if we apply tu cNOT gate:

$$
\begin{array}{lll}
& |\psi\rangle= & u+\frac{1}{\sqrt{2}}\left[(-)^{a}|a b\rangle+|\bar{a} b\rangle\right]=\frac{1}{\sqrt{2}}\left[(-)^{a}|a, a \oplus b\rangle+|\bar{a}, \bar{a} \oplus b\rangle\right] \\
\begin{array}{|lll}
1 a & b\rangle & \\
0 & 0 & \\
& & \frac{1}{\sqrt{2}}[|0,0\rangle+|1,1\rangle] \equiv\left|\beta_{00}\right\rangle \\
0 & 1 & \frac{1}{\sqrt{2}}[|01\rangle+|10\rangle] \equiv\left|\beta_{01}\right\rangle \\
1 & 0 & \frac{1}{\sqrt{2}}\left[-|11\rangle+|00\rangle \equiv\left|\beta_{10}\right\rangle\right. \\
1 & 1 & \left.\frac{1}{\sqrt{2}}[-| | 0\rangle+|01\rangle\right] \equiv\left|\beta_{11}\right\rangle
\end{array}
\end{array}
$$

Example 2: Let us consider two quits whose Hamiltonian is given by

$$
H=\lambda Z \otimes \quad \begin{array}{ll}
H=|0\rangle=10\rangle \\
Z|1\rangle=-|1\rangle
\end{array}
$$

The product states $|a, b\rangle$ are eigenstates of H and so under time evolution they just change by a phase factor: $e^{-\frac{i}{\hbar} \lambda z \otimes z t}|0,0\rangle=e^{-\frac{i}{\hbar} \lambda t}|0,0\rangle$
$\rightarrow U(t) \sim$ time evolution operator
But if we consider the action of the time evolution operator on $|+1+\rangle$, which is not an eigenstate, then

$$
\begin{aligned}
& e^{-\frac{i}{\hbar} \lambda z \otimes Z t}|+,+\rangle=e^{-\frac{i}{\hbar} \lambda t z \otimes Z} \\
&|\Psi(t)\rangle=\frac{1}{2}\{|0,0\rangle+|0,1\rangle+|1,0\rangle+|1,1\rangle\rangle \\
&\left.e^{-\frac{i}{\hbar} \lambda t}|00\rangle+e^{+\frac{i}{\hbar} \lambda t}|01\rangle+e^{i \lambda t / \hbar}|10\rangle+e^{-i \lambda f / \hbar}|11\rangle\right\}
\end{aligned}
$$

At $\left.t=\frac{\pi \hbar}{4 \lambda}:\left|\Psi\left(\frac{\pi \hbar}{4 \lambda}\right)\right\rangle=\frac{1}{2} e^{-i \pi / 4}\left\{\left|0_{1}+\right\rangle+\mid 1 \rightarrow\right\}\right\} \rightarrow$ entangled

$$
\left.\left.=\frac{1}{2} e^{-i \pi / 4}\left\{\frac{1}{\sqrt{2}}|+\rangle|+\rangle+\frac{1}{\sqrt{2}}|->|+\right\rangle+\frac{1}{\sqrt{2}}|+\rangle|-\rangle-\frac{1}{\sqrt{2}}|->|-\right\rangle\right\}
$$

~ Entangled

At $\left.t=\frac{\pi \hbar}{2 \lambda}\left|\Psi\left(\frac{T \hbar}{2 \lambda}\right)\right\rangle=e^{-i \pi / 2}|+|-\right\rangle \sim$ Not entangled

Alice \& Bob
Let us consider an entangled state $\left|\psi_{-}\right\rangle=\frac{|01\rangle-110\rangle}{\sqrt{2}} \in H_{A B}=H_{A} \otimes \mathcal{H}_{B}$
Suppose after the creation of such a state the quit belonging H_{A} comes into Alice's possession, while the quit from B goes T Bob.

If Alice measures in the $\{|0\rangle,|1\rangle\}$ basis then Bob's quit collapes into either $|0\rangle$ or 11) state conditional upon the outcome of Alice's measurement.

This brings us to the idea of conditional states.

The No communication Theorem:
Suppose Thine $\frac{1}{\&}$ Bob share an entangled state:

$$
\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}\{|01\rangle-|10\rangle\}
$$

If Alice makes a measurement then it influences the result of Bob's measurement. But entanglement cannot be used $T O$ send information by Alice T Bob in a way that violates the principle of special relativity.
Furthermore Alice's choice of measurement does not influence the probability of Bob's measurement outcomes.

Let us make these ideas more concrete. Let $|\Psi\rangle$ be an entangled state shared by Mice $\{$ Bb:

$$
\left|\Psi^{(A B)}\right\rangle=\sum_{a, b} \Psi_{a b}|a\rangle \otimes|b\rangle=\sum_{a}|a\rangle \otimes\left(\sum_{b} \Psi_{a b}|b\rangle\right)=\sum|a\rangle \otimes\left|\Psi_{a}^{(B)}\right\rangle
$$

where $\{|a|\}\left\{\{|b\rangle\}\right.$ are orthonormal bases for $H_{k} \frac{1}{f} H_{B} .\left\{\left|\Psi_{a}^{(B)}\right\rangle\right\}$ are states that belong to H_{B}. Note that $\left|\Psi_{a}^{(B)}\right\rangle=\left\langle a \mid \Psi^{\left(A_{B}\right)}\right\rangle$.

Now suppose Mice and Bob decide to make projective measurements in $\operatorname{th}\{|a|\}$ and $\{|b\rangle\}$ bases. Then we con compute the joint probability $p(a, b)$ by:

$$
\begin{aligned}
p(a, b) & =|\langle a, b \mid \Psi\rangle|^{2} \\
& \left.=\left|\langle a, b| \sum_{a}\right| a^{\prime}, \Psi_{a^{\prime}}^{(B)}\right\rangle\left.\right|^{2} \\
& =\left|\sum_{a} \delta_{a a^{\prime}}\left\langle b \mid \Psi_{a^{-}}^{(B)}\right\rangle\right|^{2} \\
p(a, b) & =\left|\left\langle b \mid \Psi_{a}^{(B)}\right\rangle\right|^{2}
\end{aligned}
$$

Similarly we can write:

$$
p(a, b)=\left|\left\langle a \mid \Psi_{b}^{(A)}\right\rangle\right|^{2}
$$

Now let us compute the probability for Bob to get ib) as a result of his measure mont:

$$
p(b)=\sum_{a} p(a, b)=\sum_{a}\left|\left\langle a \mid \Psi_{b}^{(A)}\right\rangle\right|^{2}
$$

$$
\begin{aligned}
& =\sum_{a}\left\langle\Psi_{b}^{(A)} \mid a\right\rangle\left\langle a \mid \Psi_{b}^{(A)}\right\rangle \\
& =\left\langle\Psi_{b}^{(A)} \mid \Psi_{b}^{(A)}\right\rangle
\end{aligned}
$$

Thus we see that $p(b)$ is inclependent of the choice of measurement by Trice.
Since $p(b)$ involves $\left|\Psi_{b}^{(A)}\right\rangle \in \mathbb{H}_{A}$ if we mate a change of basis in \mathbb{H}_{A} them $\left|\psi_{b}^{(A)}\right\rangle \rightarrow\left|\Psi_{b}^{a)^{\prime}}\right\rangle=u\left|\psi_{b}^{(A)}\right\rangle$. This may seem \hat{t} give a different probability distribution $p^{\prime}(b)=\left\langle\Psi_{b}^{(a)^{\prime}} \mid \Psi_{b}^{(a) \prime}\right\rangle$ bat since $\left|\Psi_{b}^{(a)}\right\rangle=U\left|\Psi_{b}^{(A)}\right\rangle$ we get

$$
\psi^{\prime}(b)=\left\langle\Psi_{b}^{(A)}\right| u^{\dagger} u\left|\Psi_{b}^{(A)}\right\rangle=\left\langle\Psi_{b}^{()} \mid \psi_{b}^{(\omega)}\right\rangle=p(b)
$$

Thus we see that $p(b)$ is independent of the choice of basis for H_{A}.
This is the content of the no-communication Theorem:
Two parties who shave a quantum state cannot communiente by:
i) either a choice of local measurement
$i i)$ or by mating a local unitary transformation.

Conditional states:
Although Allies choice of measurement or choice of states do not influence Bobs probabilities $p(b)$, The result of Alice's measurement docs influence Bobs measurement out comes.

This is most easily seen if we take the Singlet state and ilia measures in the $\{|0\rangle,|1\rangle\}$ basis. Then $p(b=0 \mid a=0)=0 \quad p(b=1 \mid a=0)=1$.

Thecording to Bayes's theorem:

$$
\begin{aligned}
p(b \mid a) & =\frac{p(a, b)}{p(a)} \\
& =\frac{\left|\left\langle b \mid \Psi_{a}^{(B)}\right\rangle\right|^{2}}{p(a)}
\end{aligned}
$$

This probability is identical $\bar{\omega}$ that sotuined by Bob having The conditional state:

$$
\left|\hat{\Psi}_{a}^{(B)}\right\rangle=\frac{\left|\Psi_{a}^{(B)}\right\rangle}{\sqrt{p(a)}}
$$

Density Operates for a subsystem:
Now consider a subsystem B of a compositive system $k B$. The states of B are given by the conditional states:

$$
\left|\hat{\Psi}_{a}^{(B)}\right\rangle=\frac{\left|\Psi_{a}^{(B)}\right\rangle}{\sqrt{p(a)}}=\frac{\left\langle a \mid \Psi^{(A B)}\right\rangle}{\sqrt{p(a)}}
$$

If we now compute the density operator for system B :

$$
\begin{aligned}
p^{(B)} & =\sum_{a} p(a)\left|\hat{\Psi}_{a}^{(B)}\right\rangle\left\langle\hat{\Psi}_{a}^{(B)}\right| \\
& =\sum_{a}\left\langle a \mid \Psi^{(A B)}\right\rangle\left\langle\Psi^{(A B)} \mid a\right\rangle \\
& =\sum_{a}\langle a| p^{(A B)}|a\rangle
\end{aligned}
$$

Thus we see that $p^{(B)}$, the density operator for the subsystem B is given by tracing over the subsystem A.
Partial Trace:
Tracing over a system involves the mathematical operation of partial tracing which is defined using product states:

$$
\text { If } \quad Q^{A B}=\left|\alpha^{(A)}, \phi^{(B)}\right\rangle\left\langle\beta^{(A)}, \psi^{(B)}\right|
$$

Then $Q^{A}=\operatorname{Tr}_{B} Q^{A B}=\left\langle\phi^{(B)} \mid \psi^{(B)}\right\rangle\left|\alpha^{(A)}\right\rangle\left\langle\beta^{(A)}\right|$

$$
\begin{aligned}
& =\sum_{b}\left\langle\phi^{(B)} \mid b\right\rangle\left\langle b \mid \psi^{(B)}\right\rangle\left|\alpha^{(A)}\right\rangle\left\langle\beta^{(A)}\right| \\
& =\sum_{b}\left\langle b \mid \beta^{(A)}, \psi^{(B)}\right\rangle\left\langle\alpha^{(A)}, \phi^{(B)} \mid b\right\rangle \\
& =\sum\langle b| Q^{A B}|b\rangle
\end{aligned}
$$

Expectation Values of Operations of A Subsystem:
Suppose θ_{A} is an operator/Obsearrable of the subsystem A. If we compute $\left\langle\theta_{A}\right\rangle$ then we first extend θ_{A} to the system $A B$ by $\theta_{A} \rightarrow \theta_{A} \otimes \mathbb{1}_{B}$.
Then of the system in the joint state $\left|\psi^{(A B)}\right\rangle$ then

$$
\begin{aligned}
\left\langle Q_{A}\right\rangle & =\left\langle\Psi^{(A B)}\right| \theta_{A} \otimes \mathbb{1}_{B}\left|\Psi^{(A B)}\right\rangle \\
& =\sum_{b}^{\left\langle\left\langle\Psi^{(A B)}\right| \theta_{A} \otimes\right| b X b\left|\Psi^{(A B)}\right\rangle} \\
& =\sum_{b} \underbrace{\left\langle\psi^{(A B} \mid b\right\rangle}_{H_{A}^{*}} \theta_{A}\langle\underbrace{\left\langle b \mid \Psi^{(A B)}\right\rangle}_{G H_{A}} \\
& =\operatorname{Tr}_{A} \underbrace{\sum_{b}\left\langle b \mid \Psi^{(A B)}\right\rangle\left\langle\Psi^{(A B)}\right.}_{b}|b\rangle \theta_{A}=\operatorname{Tr}_{A} \rho^{(A)} \theta_{A}
\end{aligned}
$$

The Two Interpretations of Density Operates:
Interpretation 1: Density operator for a system describes our lack of Kuadedge about how the state was prepared. This is the statistical ensemble picture.

Interpretation 2: If systems $A \in B$ share an entangled state but the two systems cannot connumnicate then $P^{(A)}=T_{B} P^{(A B)}$
describes the state of the subsystem A.
The two interpretations are related: If Bob makes a measurement on B but cannot communicate the result of his measurement is Ale then re see that Interpretation $2 \rightarrow$ Interpretation 1.

Schmidt Decomposition:
Suppose we have a density matrix ρ_{p} defined on a system p. We can then diagonalize P_{p} in some orthonormal basis $\left\{\left|k^{p}\right\rangle\right\}$:

$$
\rho_{p}=\sum_{k} \lambda_{k}\left|k^{P}\right\rangle\left\langle k^{p}\right|
$$

where $\lambda_{k} \geqslant 0$ with $\sum_{k=1}^{\text {dim } H_{r}} \lambda_{k}=1$. This is just the spectral decomposition of P_{p}. Now suppose That three exists an auxiliary system Q such that the combined system $P Q$ adink an entangled state $\left|\Psi^{P Q}\right\rangle \in \mathbb{H}_{P} \otimes \mathbb{H}_{Q}$ st that with $P_{P Q}=\left|\psi^{P Q}\right\rangle\left\langle\psi^{P Q}\right|$ we have:

$$
P_{P}=\operatorname{Tr}_{Q} P_{P Q}
$$

For a generic basis $\left\{\left|\phi^{Q}\right\rangle\right\}$ of Q we can write:

$$
\begin{aligned}
\left|\Psi^{P Q}\right\rangle & =\sum_{\phi k} c_{\phi k}\left|k^{P}\right\rangle\left|\phi^{Q}\right\rangle \\
& =\sum_{k}\left|k^{P}\right\rangle \sum_{\phi} c_{\phi k}\left|\phi^{Q}\right\rangle \\
\left|\Psi^{P Q}\right\rangle & =\sum_{k}\left|k^{P}\right\rangle\left|\Psi_{k}^{Q}\right\rangle
\end{aligned}
$$

where $\left|\Psi_{k}^{Q}\right\rangle \equiv \sum_{\phi} c_{\phi k}\left|\phi^{Q}\right\rangle$.
So now

$$
\begin{aligned}
\rho_{P} & =T_{r_{Q}}\left|\Psi^{P Q}\right\rangle\left\langle\psi^{P Q}\right| \\
& =\sum_{k k^{\prime}}\left|k^{P}\right\rangle\left\langle k^{\prime P}\right|\left\langle\psi_{k}^{Q} \mid \psi_{k^{\prime}}^{Q}\right\rangle
\end{aligned}
$$

Comparing this with $P_{p}=\sum_{k} \lambda_{k}|k\rangle k \mid$ we see that $\left\langle\psi_{k}^{Q} \mid \psi_{k^{\prime}}^{Q}\right\rangle=\lambda_{k} \delta_{k k^{\prime}}$ We can then introduce the orthonormal set: $\left|\psi_{k}^{Q}\right\rangle=\sqrt{\lambda_{k}}\left|k^{Q}\right\rangle$

Then we write $\left|\psi^{P Q}\right\rangle$ as:

$$
\left|\Psi^{P Q}\right\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|k^{P}\right\rangle\left|k^{Q}\right\rangle
$$

Schmidt Decomposition
$\sqrt{\lambda}_{k} \rightarrow$ Schmidt Coefficients.

Comments:

1. If $\operatorname{dim} H^{P}=\operatorname{dim} H^{Q}=d$, Then the expansion of an entangled state in a generic product basis $\left\{\left|\phi^{p}, x^{Q}\right\rangle\right\}$ would have d^{2} terms in general. The Schmidt decomposition has at most only d terms with real coefficients $\sqrt{\lambda_{k}}$. These coefficients are known as the schmidt coefficients. The schmidt decomposition is specific to the entangled state we have chosen.
2. For an entangled state at least two Schmidt coefficients unst be non-zero.
3. If the dimensions of the two thibert spaces are unequal then the number of terms in the decomposition will be determined by the dimension of the smaller dimensional tlilbest space.
4. The Schmidt basis is w special basis (when the two dimensions are the same). $\left\{\left|k^{P}\right\rangle\right\} \in\left\{\left|k^{Q}\right\rangle\right\}$ are eigenbases for $P_{P} \leqslant P_{Q}$, respectively.
5. $\left|\Psi^{P Q}\right\rangle$ is known as the purification of P_{P}. For a given mixed state P_{P} one can always find an auxiliary quantuun system Q such that there exists a pure state $\left|\psi^{P Q}\right\rangle \in \underset{P}{\operatorname{Ht}_{P} \otimes H_{Q}}$ st. $P_{P}=T_{r_{Q}}\left|\Psi^{P Q}><\psi^{P Q}\right|$.

Example: For a pair of quits, find the Schmidt decomposition for the state

$$
|\gamma\rangle=\frac{1}{\sqrt{2}}(|0,0\rangle+|1,+\rangle)
$$

Entanglement Entropy:
If we take the partial trace of a subsystem of an entangled state we find that The remaining subsystem is described by a mixed state. One can then compute the ron Neman entropy of the remaining density operator and it will be nonzero only if the original state was an entangled state. This is called entanglement entropy:

$$
\begin{gathered}
\rho_{A}=T_{B} \rho_{A B} \\
S_{E E}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right) .
\end{gathered}
$$

Ex: Compute the entanglement entropy of the state $\left|\Phi^{\alpha}\right\rangle=\frac{\alpha|01\rangle-(1-\alpha)|10\rangle}{N_{\alpha}}$ for $\alpha \in[0,1]$ and $N_{\alpha} \rightarrow \alpha$ - dependent normalization constant. Show that it vanishes for $\alpha=0 \frac{1}{9} 1$ and is maximized for $\alpha=0.5$. What is $\left|\Phi_{-}^{\frac{1}{2}}\right\rangle$?

