

























































































An Introduction to quantumInformation
Assumed background

Undergraduaterealspacequantum Mechanics

1 Hilbertspacebasics Diracnotation

2 Schrodingertimeevolution

3 Hermitian and unitary operators

Outline

1 Motivations

2 Qubits and quantumlogicgates

3 Densityoperators

4 Entanglement

5 Thesimplestquantumalgorithm DeutchJozsaalgorithm

6 Generalizedmeasurements

7 Quantumkeydistribution OKB

8 CHSH inequality Bell's theorem

9 Therotatingframe

10 NMR

References

1 SchumacherandWestmoreland QuantumProcesses SystemsandInformation

2 MichaelNielsen IsaacChuang Quantum Computation andquantum

Information




























































































1 Motivations

1 Sizeoftransistors shrinking 7 nm 7 109m Comparabletosizeofatoms

0.2 nm 2 1019 for a silicone atom Quantum and thermaleffects will limit the

efficiencyof nextgenerationof transistors To keepupwith Moore's lane wemay
need togo quantum

2 InformationSecurity Manyof ourcurrent cryptographic protocols safeguard
informationagainst bruteforceattacks bybeingbased on NPhardproblems Quantum

algorithmsexistthat can cracksuchprotocols in polynomial time Also quantum

cryptographicprotocols offerbettersecurity against hacking This is covered in 9KD

3 Simulationsof quantumsystems classical computers are notvery efficient in

simulatingquantumsystemsThedimof the Hilbertspaceof N twolevelsystems is
2 For N 100 such systems common in manybodyphysics the dimofthe

Hilbert space
21002103 Quantum processors wouldfaremuch better at simulating

such a large state space

4 QuantumChurchTuringhypothesis

classical strong ChurchTuringThesis AprobabilisticTuringmachinecanefficiently

simulateanymodel of classical computation
QuantumstrongChurchTuringThesis AquantumTuring machine can efficiently

simulateanyrealisticmodelof computation

5 Quantumalgorithms




























































































2 Qubits and quantumlogicgates

Information in classical computers are encoded in stringsof bits Eachbit can be
represented by a binarydigit o or I Complicated computercircuits are madeout

of Simpler logicgates such as NOT AND OR NAND Xor NORetc NAND and Nor

gates canbe used tomake any othergate andso the setof NAND Nor is

an exampleof a universalgates
Anexampleof a digitalcircuit xor A B o fAB 0 0 0

0 I 0 1
AND I 0 0 1

It halfaddercircuit 1 I I 0

An important observation about classical gates They are irreversible Not l l

NANDY D Z

Y
Y

Y
XT NE F D Z X Y Z t

o 0 I 0 0 I
0 1 I 0 I 0
I 0 1 I 0 0

1 I 0

Quantumbits qubits are twolevel quantumsystems The two orthonormal basis

states representing o I are written as 107 117 Physicalrealizationof a

qubit a spindegreeoffreedom of a quantum particle
b Twoenergylevelsof a quantumstate

c Interferometer photon neutron travelling along an arm

The set 107 1159 iscalled the computational basis In contrast to a classical

computer qubitshavethefollowingfeatures

1 A qubit can be in an arbitrary superpositionof 107 117

147 2107 pli with 1214181 1




























































































2 Two or more qubitscan be in an entangled stateE.g thestate

107107 117117
Ma

can not be written as 1471017

Muchofthe powerof quantumcomputers arisefromthesetwofeatures
Oftenweshallrepresent 107 117 in the computational basis

107 115 9 Thematrixelementsare alb

weshallhenceforthdropthe quotationmarks

Quantum logicgates are unitary operators thatact on qubits

Ip U
in

it

Examplesoflogicgates

wot
15 y in you

5
controlbit79thCNOT defined

intermsofthe Explicitly 107107 107107

computational basis 107117 107117
113107 117117
Ii 11 117107

The snot is a linearoperator and it actson an arbitrarytwoqubitinputbylinearity

It a 107107 plo 11 8117107 81717 then CNOTactingon it willgive

1417 2107107 81071is 811711 815107

Verify that in the computationalbasis enot is givenby
4 1

Otherusefulgates include

control Phase Gate
Ix
in Hy 1714 e dix ly I

eid




























































































Ofcoursesinglequbitgates are also necessary

single qubitphasegate
i ay e 17

4of Eid u toe e'Ming

HadamardGate

UH Fa
1 I 44107 t 107 117 17

UH117 107 117 17

Since 43 I theHadamard is its own inverse Thefourgates ut 44 444UH

form a universal set of quantum logicgates
Exercise If we use 1 7,1 7 as ourbasisthen showthat in the CNOTgategiven
above the second qubitacts as the controlqubit

It It It 1 7
171 7 171 7
171 7 1717
I 171 7

Animportant set ofgates are thePauligates
x ox Y
Y Oy E
Z E o

Exercise show that Rx10 é cos92 H i sin92 X

Ry o e cos92 H i sin 9 Y

Rz o e I cos92 H i sin92 Z




























































































3 Density Operators

Consider a quantum system with H as an observable If 1273 are thesetof
orthonormaleigenvectors 7127 0127 4127 822

Then anymeasurementof H will yield one of its eigenvalues According to the
spectral decomposition theorem 7 2212741

If a systemwas in the state 147when themeasurementwas made the

probabilityobtaining a is PK 2214712
x

Theexpectationvalue of A fr thestate 147 is
A I 2Pyla

I 2414724127

I 4147412 lay

I 4147 411127
A Tr 14741A

Nowsuppose we weren't sure ofwhatthe state of the system wasand it wasgiven
by a probabilitydistribution 147,1427 14m77 completelyarb set of
normalized statesofthe system with Itn probability distribution PPa tn
ThesePshavenothing to do with Pak above J

Thenthe expectationvalue of A is

A ÉPi Hila 4.7
PiTr 14741A

Tr É Pilate A

Tr PA
n




























































































where p É P 14.7 4it is the densitymatrix ofthe system whose state i

givenby probability distributionof statesgivenabove If only one p l and

there is only one state in p ie p 14 41 in some basis then we sayit's

a pure state Otherwisewe say thestate is mixed

Properties of density operators
l p is a positive operator All eigenvalues are positivesemidefinite

2 Trp 1

3 If p p then P is pure Tr p2 1 Tconversetimeonly in dim 3

Examples

i p lool p o

2 1 1 4 1 107 117 01 41 I loxoltlixilt lox INUI

Il
3 p I loxolt flexi 2 9
I 92 are pureslates while 3 is mixed

In ddimensionsthe density operator

Tha I Id
is known as the maximallymixed state

Density matrixof a quantal system in an environment at temperature T

Pe I e final B ET
where In are theeigenstatesof theHamiltonian operatorand Z Tr é B

Some will recognize pp as the quantum canonical ensemble

EI Suppose you are given a collectionof states which are a eithermanycopie

of the stateta10 tolie or b manycopiesof the state 107 or ID drawn at




























































































random using a faircoin Isthere a waydistinguish betweenthetwoscenarios If
devise an experiment to distinguish the two cases

Ex showthat the general state of a qubitcan bewritten as
10,47 CosE 10 e sing117 of 01 Tl 014 27

and so a purequbitcan berepresentedby thepoints on the surfaceof a
unit sphere Blochsphere 110

01

I X l

NXT ZS 11 11

Weshall nowshowthat the interiorof the Blochsphererepresent all themixed
statesof a qubit
Let p general stateof a qubit Since pt p p 9 5 with a b er

But Trp 1 a tb 1 Thuswe can parametrize pbythree realnumbers

Now Tr p I p L I ax X ayy azY and Trp E I

a ax I ayy az I musthave tal's 1

I is thecalled a Block rector and when tall 1 it represents a mixedstate

I 0 is representedbythe centreof the Blochball and it is known as the

maximally mixed state

Note P I10 01 III I I I I I 41

For anymixed state I an infinite numberof decomposition intermsof other
mixedstatesThis is known as the ambiguity of mixtures




























































































Von Neumann Entropy

It measureoftheambiguityof mixture is thevon Neuman entropy

Ef Tr plogp Base 2 when workingwithqubits

where forPii o we define Pii logPii 0 Forpurestates 5 0 For a

maximallymixed state Tla I Id weget 5 Tr atHdlogTd Tr d logd

logd And so 01St logd

VonNeumannentropy is partof an infinitetowerof entropies known as Renjientropies
So logTrp 220

Hs 1 52 Srv using L'Hospital'srule and adapt 428109 logp p
von Neumann entropy is a useful measureof bipartite entanglement whichwe

turn t next

Entanglement

If wehave twoquantum systems H B the combined system is described a

tensorproduct Hilbert space HAB Ha HB

If 1417 and 10 7 are orthonormal bases on teaandJets then the product

states 147but 14 14m form an orthonormal basis on Hats

These are examples of productstates but I states on Hats of theform

Ha c 14,10 02141,4 t whichmaynotbe written in the

productform Such states are called entangled states

Example Fortwoqubits thefollowing states are examplesof entangled states
191 10,07 Illa

1017 2 10,1 I
11,07




























































































These states are known as theBellstates andthey are maximallyentantangled

Before wediscussaboutentanglement and howto quantify it let us givebit more

background on tensorproduct

Thetensorproduct Haxte tea hasthefollowing properties

1 If 1a etea 167E th then I a b la lb E tea

2 Bilinearity I a plb palba p I a Ipo p la 1ps

3 Hm rector147 EJens can be expressed as linearsuperpositionof tae Ibm

where lad and Ibuy are orthonormal basesof thasiJe respectively

4 The innerproduct on teas is givenby Ya0,141,413 24 1417 4,141

iscussion on TensorProductStructure

By demanding that Heap is also a Hilbertspace we introduce an enormousamount of
tincture intothetensor product Here we enumerate someofthese
1 1a plb p la lb Plas lb Using bilinearity

2 Suppose 1a Iad E Ha s.t Laila 0 Nowconsider Iai bi laz.ba

E Hap Cal b laz b 2911927 bilbo 0 regardless of the valueof bilbo
3 Let lad be an orthonormalbasisfortea and Ibm an orthonormalbasisfor
Alps Then lai bm form an orthonormal basisforflap ai butaj bn Si 8m

ThisbasiscalledtheproductbasisforHAB
4 If the dimensionsof Hla Ilp are da si de respectively then the dimension of
HAB is dadis r

5 Extending linearmaps on Ila 41 ontoHAB If A B is a linear opera

to A Ha Ha B yep ster then we can extend its action by defining

7 1a 167 Ala Ib BCla lb a BID




























































































6 The productoperator A B is defined by
A B 1a 1677 Ala Blb

la bi a bit laika IbiXbrl

Example1 Constructing theBellstatesfromproductstates consider

Hadamard H 21 I 4107 17 H117 17

CNUT U la b la a b u

1007 1070107 6 8 8 1017 107011 9
1107 11 107 1 111

Nowconsider the circuit

tan

So inthe firststep H 1 Iasb 6Data 157 lb where I Not a

Golab lab

Now if we applytheCootgate

147 4 12119 ab tab Hala atb ta a by

la b 147
0 0 t 10,0 11,17 Ipod

0 i t 101 1107 Ipo

I 0 I 111 1007 Bio

I I t 1107 1017 Ip

Example2 Let us considertwoqubitswhose Hamiltonian isgivenby
H X Z Z Z107 107

z117 117




























































































The product states lab are eigenstatesofH andso undertime evolutionthey

just changeby a phasefactor e É 10,07 é Yoo
Uct timeevolution operator

But if we consider the action of thetimeevolutionoperator on 1 1 7 which is

not an eigenstate then

é 707th e
At 702

I 1010 10 i t 11107 11,17

IED I é Too et lo is e
th
no éixth

At t II NCTE I e 10.7 11 7 entangled

I e
t
Eh it Et It 1 71 7 8,1717
Entangled

At t It 14 EE e 771 7 no Notentangled

It it t t t t t t t t

Alice Bob

Let us consider an entangled state 14 7 101721T E tea Jet Fe

supposeafterthecreationofsuch a state the qubit belongingHa comes into Alice's

possession while the qubitfromB goesto Bob

If Alicemeasures in the 107,117 basis then Bob's qubitcollapses into either 107or

113 state conditional upon the outcomeof Alice's measurement

Thisbrings us totheideaof conditional states




























































































TheNo communication Theorem

Suppose Hice Bobshare an entangled state

Ipa 1017 1107

If Alice makes a measurement then it influences theresultof Bob'smeasurement

But entanglement cannotbe used tosendinformation byAlice to Bob in a way
thatviolates the principleof special relativity
Furthermore Alice's choice of measurement doesnot influence theprobability
of Bob's measurement outcomes

Letusmake the ideasmore concrete Let 147 be an entangledstate shared

by Hice Bob

14937 I Iab a 167 Ia la 3426167 I 1a 1494

where lay 167 are orthonormal basesfor flatter Ma arestates

that belong to It Notethat 14am a I By

Now suppose Alice and Bob decide to makeprojectivemeasurements in the lay
and lb bases Thenwecancompute thejointprobability pcarb by

p asb a b 171
KablIa la
I SaasRb Ia p

p a b blIac 12

similarlywe can write

peab Ka Ig A 12
Now letus computethe probabilityforBob toget 167 as a resultofhismeasure
meat

pcb I plass I ka Iba I




























































































I If aka UA

Hft IGA
Thuswe see that pb is independent of the choice ofmeasurement by
Alice

since pls involves 145 E Ita ifwemake a changeof basis in Fla
then1457 1154145 Thismayseemto give a different probability
distribution p b EY EY but since 115 414547 weget
p b 4 1441154 AM In pcb

Thuswe seethat pcb is independent ofthe choice of basis for Ita
This is the contentof theno communication Theorem

Twoparties whoshare a quantumstatecannot communicateby
i either a choice of local measurement
ii or bymaking a local unitary transformation

Conditional states

Although Hliceschoiceofmeasurement or choice of states do not influence
Bob's probabilities pb the result of Alice's measurement does influence Bob's
measurement out comes

This is mosteasilyseen if we take the singlet state and Alice measures
in the 103159 basis Then plb o a o o pbaila o 1

According to Baye's theorem

p bla teab
p a
bl yalB 2

peas




























































































This probability is identical to that obtained by Bobhavingthe conditional

state

É B IacB
NPca

Density operatorsfor a subsystem
None consider a subsystem B of a compositive system AB The states of B are

givenby the conditionalstates
I É pg Cal

CAB

Npca

If wenowcomputethedensity operatorforsystem B
B

I pea Iad Each

In al AB AB ay

I al p
AB

a

Thuswe see that pen the densityoperator for the subsystem B is given

bytracing over In subsystem A

PartialTrace

Tracing over a system involves the mathematical operationof partial
tracing which is defined using product states

If SAB 12A CBS pctWB

Then at Tr GAB 44374437 1243 BCA

I dCB Xb 4437 12A p
CA

I blpct4437742A yo b
I b 9 lb




























































































b 9 I 7

ExpectationValuesof Operationsof A subsystem
suppose Oa is an operator observable ofthesubsystem It If we compute Oa
then we firstextend Oa to the system AB byOa Oa HB
Then if the system in the joint state 144377 Hun

Lo L B I QQ H IRBY
3 214 IOa I Xb

CAB

4th III
a

3141,7471
b Oa Trap da

TheTwoInterpretations of Density Operators
Interpretation 1 Density operatorfor a system describes our lack of knowledge
abouthowthe statewasprepared This isthe statistical ensemble picture

Interpretation2 If systems A B share an entangledstate but thetwo

systems cannot communicate thenpH Tr pad
describes thestateof the subsystem A

Thetwo interpretations are related If Bob makes a measurement on B
but cannot communicate the resultof his measurement to Alice then
we see that Interpretation 2 7 Interpretation 1




























































































Schmidt Decomposition
Supposewehave a densitymatrixppdefined on a systemp Wecanthendiagonalize pp insome

orthonormal basis IK'M
Pp E Ik IKPKKP

where Ak o with É Ak 1 This isjustthespectral decompositionofpp Nowsuppo
That thereexists an auxiliary system is suchthatthe combinedsystem PG adits an on

tangled state 19 e step Hla st that with ppg 14107 4 9 wehave

Pp TraPpa
For agenericbasis 109 of 9 we can write

110Pa I Cpk1kt 109

Elk I could's
14107 I 1kt 1129

where 142 I 4Carl49
Sonow p Try1479724Pal

I lKP KP 4,94,9

Comparingthiswith pp I Ak Kkk Weseethat 2481419 7kSky
We canthen introducethe orthonormalset 1497 Tak Ike

Thenwewrite 14107 as

14Pa E NIKKP Kay
SchmidtDecomposition

In Schmidt coefficients




























































































Comments

1 If dimHer dimHed d thentheexpansionof an entangled state in agenericproductbasis

101 9 wouldhave d terms ingeneralThe Schmidt decompositionhas atmostonly

d terms withreal coefficients Tak These coefficients areknown as theSchmidt

coefficientsThe Schmidt decomposition is specificto the entangled statewehavechosen

2 For an entangled state atleasttwo Schmidtcoefficientsmustbe nonzero

3 If the dimensionsofthetwoHilbertspaces are unequal thenthenumberofterms in the

decompositionwill bedeterminedbythe dimensionofthesmaller dimensional Hilbertspace

4 TheSchmidt basis is a specialbasis when thetwodimensions are the same

Ik 1 7 are eigenbases fur pp pg respectively

5 14Pa is known as the purificationof pp For a givenmixedstate pp one can

alwaysfind an auxiliary quantum system is such that there exists a pure stat

14107 E depth st pp Tra 14
d 47

Example For a pairofqubitsfindtheSchmidt decompositionforthestate
177 Iz 10107 11,7




























































































Entanglement Entropy

If wetakethepartialtraceof a subsystem of an entangledstate wefindthat
the remaining subsystem is describedby a mixed state Onecanthen compute

the vonNeumannentropyof theremaining densityoperator and it will be non

zero only if the original state was an entangled state This is called

entanglemententropy

P TVBPAB

SEE Tr PalogPa

Ex Compute the entanglement entropy of the state It
4107 7

for L E OD and Na a dependent normalization constant Shove that it

vanishesfor 2 0 I and is maximized for 2 0.5 What is 19

SEE

a
























































































































































































































































































