QIT Lecture \#2

1. No coning Theorem
2. Quantum Teleportation
3. Quantum Key Distribution (QKD)
4. EPR $\&$ Bell's Inequality (CHSH version)
5. The Rotating Frame
6. NMR as a quantum computer

The Quantum No. Cloning Theorem:
Suppose μ is a proposed doming machine:

$|\phi\rangle=$ "input state"
$|0\rangle=$ "blank paper"
$\left|\mu_{0}\right\rangle=$ Initial state of the machine

$$
\left|\phi, 0, \mu_{0}\right\rangle \xrightarrow{4}\left|\phi, \phi, \mu_{\phi}\right\rangle
$$

Final state of the machine may depend on the arbitrary state $|\phi\rangle$.

If we consider two district non-orthogonal states $|\phi\rangle\left\{\left|\phi^{\prime}\right\rangle\right.$ so that

$$
0<\left|\left\langle\phi \mid \phi^{\prime}\right\rangle\right|\langle 1
$$

Consider

$$
\begin{aligned}
\left|\phi, 0, \mu_{0}\right\rangle \xrightarrow{L}\left|\phi, \phi, \mu_{\phi}\right\rangle & =u\left|\phi, 0, \mu_{0}\right\rangle \\
\left.\left|\phi^{\prime}, 0, \mu_{0}\right\rangle \xrightarrow{L}\left|\phi^{\prime}, \phi_{1}, \mu_{\phi}\right\rangle\right\rangle & =u\left|\phi^{\prime}, 0, \mu_{0}\right\rangle \\
\left\langle\phi, \phi_{1} \mu_{\phi} \mid \phi^{\prime}, \phi^{\prime}, \mu_{\phi^{\prime}}\right\rangle & =\left\langle\phi, 0, \mu_{0}\right| u^{\dagger} u\left|\phi^{\prime}, 0, \mu_{0}\right\rangle \\
\downarrow & =\left\langle\phi, 0, \mu_{0} \mid \phi^{\prime}, 0, \mu_{0}\right\rangle \\
\left\langle\phi \mid \phi^{\prime}\right\rangle^{2}\left\langle\mu_{\phi} \mid \mu_{\phi^{\prime}}\right\rangle & \stackrel{?}{=}\left\langle\phi, \phi^{\prime}\right\rangle
\end{aligned}
$$

Since $\left.\left.\left\langle\phi \mid \phi^{\prime}\right\rangle^{2}<\mu_{\phi}\left|\mu_{\phi}\right\rangle\right\rangle\right\rangle<1$ The above equality cannot hold. The LHS must be smaller in magnitude than the right hand side. Thus no doming madine can exist.

Quantum Cryptography
Suppose Alice wants to send Bob a secret message. One option that slice has is $\bar{\hbar}$ commuricate with Bob using a private channel. But what if such a private channel is not available or they think that the security of their private channel has been compromised. Under such circumstances thy must consider public channel but to keep anyone else from reading Their message Alice needs to encrypt her message. She doss it by using a private key. Anyone who wants 5 read the message must decrypt it using the same key.
Suppose the message that Terce wants k send is expressed in a string of binary digits (bits) We call this the plaintext. It consists on n bits. The plaintext is converted into a code by adding 5 it, modulo 2, an n. bit key:

Plain text: 0

Key:	1	0	1	0	0	1	1	1	0	1	1	0
Gphertext:	1	1	0	0	1	1	1	0	1	0	1	1

The result of adding the key w the plaintext results in the eyphat text. Alice then shares the opphertest with Bob over a public channel. Wiltons having aces th the key the apphertext reads like complete giborish.

Bob, when the recieves the ayphertext adds the private key $t=$ decrypt the message:
Gphertaxt: $\quad 11000111101011$

| Key: | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Plain text: | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |

For large n it becomes increasingly mole difficentt \hbar guess the key. For n thence are 2^{n} possibilitiss. But in principle wilt the help of a powerful computer the evesdropper Eve can crack the code. There is also the sorry that the key itself might be compromised. In the first instance Rice \& Bob will have to meet up \hbar exchange the key.
Quant crpptograply offers may advantages over dassieal cryptography. Here vie describe a protoeal for quantum e key distribution ($(\mathcal{K D})$ Known as BB 84 named after its inventors Charles Bennet $\frac{1}{4}$ Gilles Brassard and the year (1984) in which They proposed it. BB84 is considered the beginning of the field of quantum copptograply.

In BB84 protect Alice produces two random strings: One consists of 0 s and Is called the parent string. And the string consists of $Z \frac{1}{4} x$ and is called the basis string. She chooses a quit in a state given by the following chart:

Basis	Parent	qubit state
	0	107
z	1	11
x	0	$1+>$
x	1	$1-7$

Thine gives Bob a string of quits according to this tale. Below we consider a sample:

Bob doasn't know either of Alicis string. He Then generates his own random basis string and measures the quit according it those basis states:
$Z \nexists \times \geq \times \times \times \quad \times \quad$ Bob's basis string
 basis given by Bob's basis string.

Bob then constructs a parent string according \bar{w} the same m le as Alice: 101110101010 Bob's parent string.

Bob Then compares his basis string with Alias over a public channel and he throws away all the quits and the corresponding parent bits in which be measused in the wrong basis:

In this say Bob and Alice generate a key.
Now what about Eve? Eve can only gather information about the basis strings used. But if she doesu.t have access to parent bits corresponding w the common basis bits she has no knowlege about the key.

Since Alice uses $N=1$ states and the dimension of the teilbert space $d=2$ we see That on each quit Eve's probability of error is

$$
P_{E} \geq 1-\frac{2}{4}=\frac{1}{2} .
$$

What happens if Eve intercept $^{\text {B }}$ the quit sent by Alice, makes a measurement and then sends it to Bob. Sine Eve will sometimes misidentify the state the state That she passes onto Bob will be in a state different from tin state that Alice propared. Thus even if Alice and Bob measures in the same basis they will obtain
different parent bits.
Alice \& Bd e can detcot Eris meddling by choosing or random sample of their Key bits and compare them over a public channel and then dimuxate them
from their key, since these bits are no longer Useful as key bits. If even after compani ny sweral hundred bits Alice and Bob find no diseryency they can be confident the at
no one had been interfering.
Comments:

1. Bob get the right parent bit about 75\%. of the time: prob of guessing the right basis $=\frac{1}{2}+P_{r b}$. of guesting the Nwougbasis $=\frac{1}{2} \times P_{r}$ rb of getting π_{n} right parent bat $=\frac{1}{2}=\frac{1}{2}+\frac{1}{4}$ $=\frac{3}{4}$.
2. Alltough Bob gets the correct parent bit 75% of the time it is only when his choice of the basis bit agree with that of The is when he can sure of the parent bit being the same as that of Alice. Tens Bob only keeps those (50\%) of his parent bits.

The EPR Critique of Quantum Mechanics:
In 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR) offered an argument That quantum mechanics is an incomplete Theory. The EPR argument, if trues, would imply that there There must exist hidden variables which ate not part of quantum mechanics. Such Theories are called 'hidden variable theories.'

Here we present a version of the EPR argument that is due w John Bell who derived a testable version of the argument which led to the Bell inequalities.

Suppose we have two quits (say, two partides with spin $\frac{1}{2}$) whide are in an entangled state given by the Bell state:

$$
\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}\{|01\rangle-|10\rangle\}
$$

For two spin $\frac{1}{2}$ partides in this state it can be shown that the total angular momentum operator $\vec{S}=\bar{S}_{A} \otimes \mathbb{1}_{B}+\mathbb{1}_{A} \otimes \bar{S}_{B}$ has eigenvalue given by $\vec{S}^{2}=s(s+1) \hbar$ with $s=0$. This state is callod a singlet state.

The nice thing about the singlet state is that it has the same form in any basis. So if we express it in the \mathbb{X} basis it becomes:

Now suppose the partide A ends up in Alice's lab while particle B ends up in Bob's lab. Alice and Bob's labs can be four apart. EPR argued that any measurement that Alice made on her quit must be independent of amy measurement that Bob die and vice verse. We may cull This assumption the locality assumption.
Now according to quantum mechanics Alice can do a bunch of incompatible measurement on
her quit. Suppose Mice has a choice of two measurements \mathbb{X}_{A} or \mathbb{Z}_{A}. Suppose Bob also has The same choice: X_{B} or \mathbb{Z}_{B}. But according t QM the 'value' of these variables do not exist before Alice or Bob makes the measurement.

If Alice chooses to measure \mathbb{X}_{A} then the value of Bob's quit's \mathbb{X}_{B} value is determined. On the other hand a measurement of \mathbb{Z}_{A} will yield the salve of \mathbb{Z}_{B}. But the capparenthy) reasonable assumption of locality means that Alice's choice
of measurement doesn't influence the measurement that Bob does. Thus the values of $\mathbb{X}_{B} \frac{1}{1} \mathbb{Z}_{B}$ must exist even Though they are not simultaneously measureable according Φ quantum mechanics. An aspect of a physical system which can be measmed without disturbing it is called 'an clement of reality.' This assumption is known as the reality assumption.

This version of local realism seems compelling since there is no known 'mechanism' by which the two particles can interact over fast distances. Furthermore Alice and Bob can even do Their measurement so that the elapsed between the events of measurement shorter than the time taken for a beam of light to traverse the distance between them. In the language of special relativity the two events are space.like separated.

Criticism of the EPR argument involves:
i) It's counterfactual. So Nice can never do bolt $\mathbb{X}_{A} \in \mathbb{Z}_{A}$ measurements and so making the statement the values of both $X_{B} \& \mathbb{Z}_{B}$ exist is not w factual statement.
ii) Noels Bohr argued that there meedu't be a physical mechanism by which the two qubits can communicate with each other. He argued that the two different choices of measwrements rive complementary to each other in the same ray the wave aspect and the
particle aspect of a quantum partide are complementary. The latter is the statement of principle of complementarity which says that whether we see the particle or wave nature of a quantum partide depends on the experimental setup.

The Bell Inequalities of the Bell Theorem
In 1964, John Bell proposed ar statistical experimental test of the EPR argument. Here we present a session of the argument due t John Clauses, Michael Horne, Abner Shimony, and Ride arch Holt (CHSH).

Let Alice and Bob have choice of malding measurements A_{1} or A_{2} and B_{1} or B_{2}, respectively. Thus joint there are four possible measurements: $\left(A_{1}, B_{1}\right),\left(A_{1}, B_{2}\right),\left(A_{2}, B_{1}\right),\left(A_{2}, B_{2}\right)$ Suppose we choose units such that these measurements eam table the values +1 of -1 . For our case we take the state to be an entangled singlet state and so we are measuring in units of $\pi / 2$.

Note that each pair of these observables are mutually exclusive as a set but we can built us a statistics of their joint values: $A_{i} \cdot B_{j}$. This quantity takes the value either +1 or -1 . CHSH then proposed to measure the are rage value of $Q=A_{1}\left(B_{1}-B_{2}\right)+A_{2}\left(B_{1}+B_{2}\right)$. Q Then can take values between +2 and -2 .

This means that the average value of Q lies between $-2 \leqslant+2$.

$$
\Rightarrow-2 \leqslant\left\langle A_{1} B_{1}\right\rangle-\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle+\left\langle A_{2} B_{2}\right\rangle \leqslant+2
$$

This is knows as the CHSH in equality and it is an example of a Bell inequality. It was deTired assuming that $A_{i} \frac{1}{a} B_{j}$ can take values independent of each other.

What values does quantum mechanics predict?
The values of $\left\langle A_{i} B_{j}\right\rangle$ in quantum mechanics will depend on both our choice of $A_{i} \sum_{i}^{1} B_{j}$ as well as th state with respect tiv which we take the average.

For measurement we consider a spin measurement in the $x-z$ plane in which the angle of the axis of measurement makes an angle θ from the 3 -axis. This direction is defined by the unit rector $\hat{n}=(\sin \theta, 0, \cos \theta)$ and the measurement is $\omega_{\theta}=\frac{2}{\hbar} \hat{n} \cdot \vec{s}=\sin \theta \mathbb{X}+\cos \theta \mathbb{Z}$.

We can now calculate $\left\langle W_{A \theta} W_{B \theta^{\prime}}\right\rangle$ for the singlet Bell state:
We first observe:

$$
X|0\rangle=|1\rangle \quad \frac{1}{4} \quad X|1\rangle=|0\rangle
$$

And so
n) $\left.\mathbb{X}_{A} \mathbb{X}_{B}\left|\beta_{11}\right\rangle=\mathbb{X}_{A} \mathbb{X}_{B} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{1}{\sqrt{2}}(|10\rangle-|01\rangle)=-\frac{1}{\sqrt{2}}(|01\rangle-| | 0\rangle\right)=-\left|\beta_{11}\right\rangle$
b) $\mathbb{X}_{A} \mathbb{Z}_{B}\left|\beta_{11}\right\rangle=\mathbb{X}_{A} \mathbb{Z}_{B} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{1}{\sqrt{2}}(-|11\rangle-|00\rangle)=-\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=-\left|\beta_{00}\right\rangle$
c) $\mathbb{Z}_{A} \mathbb{Z}_{B}\left|\beta_{11}\right\rangle=\mathbb{Z}_{A} \mathbb{Z}_{B} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{-1}{\sqrt{2}}(|01\rangle-|10\rangle)=-\left|\beta_{11}\right\rangle$
d) $\mathbb{Z}_{A} \mathbb{X}_{B}\left|\beta_{11}\right\rangle=\mathbb{Z}_{A} X_{B} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=|\beta 00\rangle$

Thus $\left\langle W_{A} W_{B} \theta^{\prime}\right\rangle=\sin \theta \sin \theta^{\prime}\left\langle\mathbb{X}_{A} \mathbb{X}_{B}\right\rangle+\sin \theta \cos \theta^{\prime}\left\langle\mathbb{X}_{A} \mathbb{Z}_{B}\right\rangle$

$$
\begin{aligned}
& +\cos \theta \sin \theta^{\prime}\left\langle\mathbb{Z}_{A} \mathbb{X}_{B}\right\rangle+\cos \theta \cos \theta^{\prime}\left\langle\mathbb{Z}_{A} \mathbb{Z}_{B}\right\rangle . \\
& =-\sin \theta \sin \theta^{\prime}+0 \pm 0-\cos \theta \cos \theta^{\prime}=-\cos \left(\theta-\theta^{\prime}\right)
\end{aligned}
$$

Let us pause for a moment and see if This result makes sense. For $\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ we see that $\mathbb{Z}_{A} \sum_{1}^{1} \mathbb{Z}_{B}$ are anti. correlated. This agrees with $\theta=\theta^{\prime} \Rightarrow\left\langle W_{A \theta} W_{B \theta}\right\rangle=-1$.

Now for $A_{i} \& B_{j}$ we choose

$$
\begin{aligned}
& A_{1}=W_{0}, B_{1}=W_{\frac{\pi}{4}} \\
& A_{2}=W_{\frac{\pi}{2}}, B_{2}=W_{\frac{3 \pi}{4}}
\end{aligned}
$$

And so

$$
\begin{aligned}
\langle Q\rangle & =\left\langle w_{0} w_{\frac{\pi}{4}}\right\rangle-\left\langle w_{0} \quad w_{\frac{3 \pi}{4}}\right\rangle+\left\langle w_{\frac{\pi}{2}} w_{\frac{\pi}{4}}\right\rangle+\left\langle w_{\frac{\pi}{2}} w_{\frac{3 \pi}{4}}\right\rangle \\
& =\left(-\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}\right)+\left(-\frac{1}{\sqrt{2}}\right)+\left(-\frac{1}{\sqrt{2}}\right) \\
& =-2 \sqrt{2}\langle-2
\end{aligned}
$$

Thus we see that in $Q M\langle Q\rangle$ violates the CHSH inequality. By changing $\theta \leqslant \theta^{\prime}$ we can also obtain $\langle Q\rangle=2 \sqrt{2}>2$.

Thus we see that QM violates the prediction of locally realistic hidden variable theory. We have spotted Bell's theorem.

