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Motivation

Complexity is related to the holographic description of black
holes

Growth of complexity = growth of black hole interiors

Thermofield double is a famous example of this
[Chapman et al, 1810.05151]

Complexity can be used as a diagnostic of quantum chaos
[Chapman, Pelicastro, 2110.14672]

Supplements diagnostics such as SFF, OTOC, Loschmidt
echo...
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Complexity

Central question: How hard is it to synthesize a desired target
state with the gates at your disposal?

Need, |ϕr ⟩, |ϕt⟩, {U1,U2, · · · ,Un}, g(U1,U2, · · · ,Un)

E.g. U1U2U1U3(U1)
3U2|ϕr ⟩ = U3U1U2U1U3(U1)

3U2U3|ϕr ⟩,
”complexity = 8”

Discrete notion of complexity closely related to quantum
computational setups

We will, however, be interested in a continuous notion of
complexity
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Nielsen Complexity

Accessible gates are taken to be from some symmetry group
[Nielsen, quant-ph/0502070]

E.g. SU(2): Gates U = e i(s1J1+s2J2+s3J3)

Target states: |ϕt(s1, s2, ..., sn)⟩ = U(s1, · · · , sn)|ϕr ⟩

We have a manifold of target states on which one can define a
metric

Complexity = shortest distance connecting points

Can introduce a circuit parameter si = si (σ)
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Nielsen Complexity

Two examples of metrics

F1 cost function: F1dσ = |⟨ϕr |U†dU|ϕr ⟩|

ds2FS = ⟨ϕr |dU†dU|ϕr ⟩ − ⟨ϕr |dU†U|ϕr ⟩|⟨ϕr |U†dU|ϕr ⟩

Group symmetries are encoded as metric isometries

F1 : Fi = ∂i (⟨ϕt(s ′1, s ′2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)|s′=s

FS metric:
gij = ∂i∂

′
j log (⟨ϕt(s ′1, s ′2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)

∣∣∣
s′=s



Motivation Background K-Complexity as Volume Dilaton Gravity Outlook

Nielsen Complexity

Two examples of metrics

F1 cost function: F1dσ = |⟨ϕr |U†dU|ϕr ⟩|

ds2FS = ⟨ϕr |dU†dU|ϕr ⟩ − ⟨ϕr |dU†U|ϕr ⟩|⟨ϕr |U†dU|ϕr ⟩

Group symmetries are encoded as metric isometries

F1 : Fi = ∂i (⟨ϕt(s ′1, s ′2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)|s′=s

FS metric:
gij = ∂i∂

′
j log (⟨ϕt(s ′1, s ′2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)

∣∣∣
s′=s



Motivation Background K-Complexity as Volume Dilaton Gravity Outlook

Nielsen Complexity

Two examples of metrics

F1 cost function: F1dσ = |⟨ϕr |U†dU|ϕr ⟩|

ds2FS = ⟨ϕr |dU†dU|ϕr ⟩ − ⟨ϕr |dU†U|ϕr ⟩|⟨ϕr |U†dU|ϕr ⟩

Group symmetries are encoded as metric isometries

F1 : Fi = ∂i (⟨ϕt(s ′1, s ′2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)|s′=s

FS metric:
gij = ∂i∂

′
j log (⟨ϕt(s ′1, s ′2, · · · , s ′n)|ϕt(s1, s2, ..., sn)⟩)

∣∣∣
s′=s



Motivation Background K-Complexity as Volume Dilaton Gravity Outlook

Nielsen Complexity

The overlap ⟨ϕr |U†(s ′)U(s)|ϕr ⟩ is thus a key quantity

The states U(s)|ϕr ⟩ are generalized coherent states

Stability subgroup H ⊂ G such that Uh|ϕr ⟩ = e iϕh |ϕr ⟩

Bigger stability subgroup leads to simpler expressions
(especially for FS metric)

Manifold of states ⇔ group elements of G/H
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Krylov Complexity

A notion of complexity without the need to specify gates

Given a Hamiltonian and reference state one first builds the
basis |On) = Hn|ϕr ⟩

From a Gram-Schmidt process one then obtains the Krylov
basis |Kn⟩

The K-complexity (or spread complexity) of a state is then
given by CK =

∑
n n⟨ϕt |Kn⟩⟨Kn|ϕt⟩ ≡ ⟨ϕt |K̂ |ϕt⟩

The Krylov basis provides an ordered basis for the Hilbert
space of target states
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Krylov Complexity

Given some basis for the Hilbert space of target space in
increasing complexity |Bn⟩

We can define complexity as C =
∑

n cn⟨ϕt |Bn⟩⟨Bn|ϕt⟩

With cn strictly increasing

The choice cn = n minimises the complexity of the
time-evolved reference state
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K-Complexity as Volume

Which notion of complexity is the right one?

Many ambiguities in the definition of complexity

Are these different notions of complexity related?

Krylov complexity related to the geodesic volume [Caputa, Magan,

Patramanis, arXiv:2109.03824]
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SU(1, 1) K-complexity

[L0, L±1] = ∓L±1 [L−1, L+1] = 2L0

Reference state L+1|h⟩ = 0 L0|h⟩ = h|h⟩

Hamiltonian H = α(L+1 + L−1)

|Kn⟩ ∝ (L−1)
n|h⟩

Spread complexity of the time-evolved reference state
|t⟩ = e itH |h⟩ given by K (t) = 2h sinh2(αt)
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SU(1, 1) Geodesic Volume

States represented on target state manifold are SU(1, 1)
coherent states |z) = ezL−1 |h⟩

Fubini-Study metric ds2 = 2hdzdz̄
(1−zz̄)2

Useful change of coordinates z = e iϕ tanh(ρ)

cosh(
√
2L√
h
) = cosh(ρf ) cosh(ρi )− cos(∆ϕ) sinh(ρf ) sinh(ρi )

Note that geodesics from the center all have L =
√

h
2ρf

For this choice of Hamiltonian we have ρ = 2αt, ϕ = π
2
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Geodesic Volume

V =
∫ 2αt
0 dρ

∫ 2π
0

√
g = πK (t)
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Geodesic Volume

Note that a few special choices have been made - volume as
measured from the center, specific choice of su(1, 1)
Hamiltonian

In general the isometry generator of the Fubini-Study metric
close on the same algebra as the group

The K-complexity operator corresponds to some combination
of the isometry generators

For example, for this choice of Hamiltonian and reference
state, we have K̂ = L0 + h
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Geometric QM

General relation between Killing vectors of the FS metric and
generators [Ashtekar, Schilling, gr-qc/9706069]

Quantum state space permits a Riemmanian metric,
symplectic structure [Kibble, 1979], [Provost, Vallee, 1980]

Given a family of states parametrised by a set of continuous
coordinates |s⟩ = |s1, s2, · · · , sn⟩

gij(s) = ∂i∂
′
j log |⟨s|s ′⟩|

∣∣∣
s=s′

and σij(s) =
1
2i ∂i∂

′
j log

⟨s|s′⟩
⟨s′|s⟩

∣∣∣
s=s′

If the states may be parametrised holomorphically
gab̄ = gb̄a =

1
2∂a∂b̄ log(z̄ |z) and σab̄ = −σb̄a = igab̄
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Vector fields

Consider an operator Ĝ acting as Ĝ |s⟩ = ϕ(s)|s⟩ − iXĜ |s⟩

One can prove that XĜ = ka∂a + k ā∂ā

ka = −1
2σ

ab̄∂b̄⟨G ⟩ and k ā = −1
2σ

āb∂b⟨G ⟩

On the manifold of states the symmetries of the quantum
states (associated with the Killing vectors) are related to
expectation values of the symmetry generators
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Dilaton Gravity

Consider the following action

S = 1
2π

∫
d2x

√
g(R + V )η + Sboundary

The equations of motion are R = −V and
∇µ∇νη − 1

2gµνV η = 0

Can be rewritten in a number of useful ways

∇γ

(
−1

2(∇η)
2 − V η2

4

)
= 0 ≡ ∇γM

∇µkν +∇νkµ = 0 ; kµ = −1
2σ

µν∇νη

The dilaton must be the expectation value of a symmetry
generator!
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Low rank algebras

L+ = L†− ; [[L−, L+] , L±] = ±2fL±

Highest weight state L−|w⟩ = 0, [L−, L+] |w⟩ = w0|w⟩

An arbitrary group element action may be written as
e i(a+L++a∗+L−+a0[L−,L+])|w⟩ = NezL+ |w⟩

The manifold of target states is a two-dimensional manifold
and each state is in a one-to-one correspondence with
elements of G/([L−, L+])
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Fubini-Study metric

ds2 = 2w0
(1−fzz̄)2

Constant scalar curvature R = − 4f
w0

We can compute the geodesic distance between any two
points represented on the manifold

For spread complexity the most general thing we can do is
generate the Krylov basis from some state
|ψz0⟩ = U(z̄0, z0)|w⟩

U(z̄0, z0) = ez0L+e
1
2f

log(1−f z̄0z0)[L−,L+]e−z̄0L−
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Spread Complexity

Krylov basis |Kn⟩ = U(z̄0,z0)(L+)n|w⟩√
⟨w |(L−)n(L+)n|w⟩

|z) = U(z̄0, z0)e
z ′L+ z ′ = z−z0

1−fzz̄0

(z̄|K̂ |z)
(z̄|z) = z ′∂z ′ log((z̄

′|z ′))

One finds K (|z⟩;H,U|w⟩) = w0(z−z0)(z̄−z̄0)
(1−f z̄0z0)(1−f z̄z)
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Spread Complexity as Dilaton Solutions

Dilaton action S = 1
2π

∫
d2x

√
gη

(
R + 4f

w0

)
The classical solution for the metric is now the FS metric
quoted previously

The general dilaton solution is given by η = c1z+c2z̄+c3(fzz̄+1)
1−fzz̄

We need to supplement this with boundary conditions

The crucial condition is that ∂zη|z=z0
= 0

This gives η = 2c3f
20(z−z0)(z̄−z̄0)
(1+fz0z̄0)(1−fzz̄) + η0

This is the spread complexity up to an additive constant and
overall factor!
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Spread Complexity as Dilaton Solutions

Physically, the boundary condition imposes that the
complexity is minimised at the appropriate reference state

The dilaton we have chosen matches exactly with cost factors
of the form K̂ =

∑
n(mn + c)|Kn⟩⟨Kn|

Though we have chosen the minimal complexity state we still
need to specify its value. And we need to determine the
scaling factor m

In terms of JT gravity quantities the matching of the scaling
is determined by setting MR = −1
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Outlook

The connection established here related spread complexity for
low rank directly to quantities in a theory of 2d gravity

Are the fluctuations of the dilaton captured by some notion
related to complexity? What about the boundary action of
the dilaton?

Dilaton models with non-linear potential terms - are these
related to different choices of cn?

Does this picture continue to hold in higher dimensions?

Can the construction be altered to give a bulk /boundary
interpretation?

Dilatons have a natural interpretation of (varying) volume of
compactified dimensions. Is this a way to get a handle on the
complexity = volume conjecture?
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Thank you for your attention!

Research is supported by the ”Quantum Technologies for
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