Towards a gravity dual for spread complexity

Jaco van Zyl
based on [A Chattopadhyay, A Mitra, HJRvZ, 2302.10489]

24 April 2023, University of Cape Town

Talk Layout

(1) Motivation
(2) Background
(3) K-Complexity as Volume

4 Dilaton Gravity
(5) Outlook

Motivation

- Complexity is related to the holographic description of black holes
- Growth of complexity = growth of black hole interiors
- Thermofield double is a famous example of this
[Chapman et al, 1810.05151]

Motivation

- Complexity is related to the holographic description of black holes
- Growth of complexity = growth of black hole interiors
- Thermofield double is a famous example of this [Chapman et al, 1810.05151]
- Complexity can be used as a diagnostic of quantum chaos [Chapman, Pelicastro, 2110.14672]
- Supplements diagnostics such as SFF, OTOC, Loschmidt echo...

Motivation

[Balasubramanian, DeCross, Kar, Li, Parrikar, 2101.02209]

Complexity

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $\left|\phi_{r}\right\rangle,\left|\phi_{t}\right\rangle,\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}, g\left(U_{1}, U_{2}, \cdots, U_{n}\right)$

Complexity

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $\left|\phi_{r}\right\rangle,\left|\phi_{t}\right\rangle,\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}, g\left(U_{1}, U_{2}, \cdots, U_{n}\right)$
- E.g. $U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2}\left|\phi_{r}\right\rangle=U_{3} U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2} U_{3}\left|\phi_{r}\right\rangle$, "complexity $=8$ "

Complexity

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $\left|\phi_{r}\right\rangle,\left|\phi_{t}\right\rangle,\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}, g\left(U_{1}, U_{2}, \cdots, U_{n}\right)$
- E.g. $U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2}\left|\phi_{r}\right\rangle=U_{3} U_{1} U_{2} U_{1} U_{3}\left(U_{1}\right)^{3} U_{2} U_{3}\left|\phi_{r}\right\rangle$, "complexity $=8$ "
- Discrete notion of complexity closely related to quantum computational setups
- We will, however, be interested in a continuous notion of complexity

Nielsen Complexity

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. $S U(2):$ Gates $U=e^{i\left(s_{1} J_{1}+s_{2} J_{2}+s_{3} J_{3}\right)}$
- Target states: $\left|\phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle=U\left(s_{1}, \cdots, s_{n}\right)\left|\phi_{r}\right\rangle$

Nielsen Complexity

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. $S U(2)$: Gates $U=e^{i\left(s_{1} J_{1}+s_{2} J_{2}+s_{3} J_{3}\right)}$
- Target states: $\left|\phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle=U\left(s_{1}, \cdots, s_{n}\right)\left|\phi_{r}\right\rangle$
- We have a manifold of target states on which one can define a metric
- Complexity $=$ shortest distance connecting points
- Can introduce a circuit parameter $s_{i}=s_{i}(\sigma)$

Nielsen Complexity

- Two examples of metrics
- F_{1} cost function: $\left.\mathcal{F}_{1} d \sigma=\left|\left\langle\phi_{r}\right| U^{\dagger} d U\right| \phi_{r}\right\rangle \mid$

Nielsen Complexity

- Two examples of metrics
- F_{1} cost function: $\left.\mathcal{F}_{1} d \sigma=\left|\left\langle\phi_{r}\right| U^{\dagger} d U\right| \phi_{r}\right\rangle \mid$
- $d s_{F S}^{2}=\left\langle\phi_{r}\right| d U^{\dagger} d U\left|\phi_{r}\right\rangle-\left\langle\phi_{r}\right| d U^{\dagger} U\left|\phi_{r}\right\rangle \mid\left\langle\phi_{r}\right| U^{\dagger} d U\left|\phi_{r}\right\rangle$
- Group symmetries are encoded as metric isometries

Nielsen Complexity

- Two examples of metrics
- F_{1} cost function: $\left.\mathcal{F}_{1} d \sigma=\left|\left\langle\phi_{r}\right| U^{\dagger} d U\right| \phi_{r}\right\rangle \mid$
- $d s_{F S}^{2}=\left\langle\phi_{r}\right| d U^{\dagger} d U\left|\phi_{r}\right\rangle-\left\langle\phi_{r}\right| d U^{\dagger} U\left|\phi_{r}\right\rangle \mid\left\langle\phi_{r}\right| U^{\dagger} d U\left|\phi_{r}\right\rangle$
- Group symmetries are encoded as metric isometries
- $\mathcal{F}_{1}: \quad F_{i}=\left.\partial_{i}\left(\left\langle\phi_{t}\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right) \mid \phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle\right)\right|_{s^{\prime}=s}$
- FS metric:

$$
g_{i j}=\left.\partial_{i} \partial_{j}^{\prime} \log \left(\left\langle\phi_{t}\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right) \mid \phi_{t}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right\rangle\right)\right|_{s^{\prime}=s}
$$

Nielsen Complexity

- The overlap $\left\langle\phi_{r}\right| U^{\dagger}\left(s^{\prime}\right) U(s)\left|\phi_{r}\right\rangle$ is thus a key quantity
- The states $U(s)\left|\phi_{r}\right\rangle$ are generalized coherent states

Nielsen Complexity

- The overlap $\left\langle\phi_{r}\right| U^{\dagger}\left(s^{\prime}\right) U(s)\left|\phi_{r}\right\rangle$ is thus a key quantity
- The states $U(s)\left|\phi_{r}\right\rangle$ are generalized coherent states
- Stability subgroup $H \subset G$ such that $U_{h}\left|\phi_{r}\right\rangle=e^{i \phi_{h}}\left|\phi_{r}\right\rangle$
- Bigger stability subgroup leads to simpler expressions (especially for FS metric)

Nielsen Complexity

- The overlap $\left\langle\phi_{r}\right| U^{\dagger}\left(s^{\prime}\right) U(s)\left|\phi_{r}\right\rangle$ is thus a key quantity
- The states $U(s)\left|\phi_{r}\right\rangle$ are generalized coherent states
- Stability subgroup $H \subset G$ such that $U_{h}\left|\phi_{r}\right\rangle=e^{i \phi_{h}}\left|\phi_{r}\right\rangle$
- Bigger stability subgroup leads to simpler expressions (especially for FS metric)
- Manifold of states \Leftrightarrow group elements of G / H

Krylov Complexity

- A notion of complexity without the need to specify gates
- Given a Hamiltonian and reference state one first builds the basis $\left.\mid O_{n}\right)=H^{n}\left|\phi_{r}\right\rangle$

Krylov Complexity

- A notion of complexity without the need to specify gates
- Given a Hamiltonian and reference state one first builds the basis $\left|O_{n}\right\rangle=H^{n}\left|\phi_{r}\right\rangle$
- From a Gram-Schmidt process one then obtains the Krylov basis $\left|K_{n}\right\rangle$
- The K-complexity (or spread complexity) of a state is then given by $C_{K}=\sum_{n} n\left\langle\phi_{t} \mid K_{n}\right\rangle\left\langle K_{n} \mid \phi_{t}\right\rangle \equiv\left\langle\phi_{t}\right| \hat{K}\left|\phi_{t}\right\rangle$
- The Krylov basis provides an ordered basis for the Hilbert space of target states

Krylov Complexity

- Given some basis for the Hilbert space of target space in increasing complexity $\left|B_{n}\right\rangle$
- We can define complexity as $C=\sum_{n} c_{n}\left\langle\phi_{t} \mid B_{n}\right\rangle\left\langle B_{n} \mid \phi_{t}\right\rangle$
- With c_{n} strictly increasing

Krylov Complexity

- Given some basis for the Hilbert space of target space in increasing complexity $\left|B_{n}\right\rangle$
- We can define complexity as $C=\sum_{n} c_{n}\left\langle\phi_{t} \mid B_{n}\right\rangle\left\langle B_{n} \mid \phi_{t}\right\rangle$
- With c_{n} strictly increasing
- The choice $c_{n}=n$ minimises the complexity of the time-evolved reference state

K-Complexity as Volume

- Which notion of complexity is the right one?
- Many ambiguities in the definition of complexity

K-Complexity as Volume

- Which notion of complexity is the right one?
- Many ambiguities in the definition of complexity
- Are these different notions of complexity related?
- Krylov complexity related to the geodesic volume [Caputa, Magan, Patramanis, arXiv:2109.03824]

$S U(1,1)$ K-complexity

- $\left[L_{0}, L_{ \pm 1}\right]=\mp L_{ \pm 1} \quad\left[L_{-1}, L_{+1}\right]=2 L_{0}$
- Reference state $L_{+1}|h\rangle=0 \quad L_{0}|h\rangle=h|h\rangle$
- Hamiltonian $H=\alpha\left(L_{+1}+L_{-1}\right)$

SU(1,1) K-complexity

- $\left[L_{0}, L_{ \pm 1}\right]=\mp L_{ \pm 1} \quad\left[L_{-1}, L_{+1}\right]=2 L_{0}$
- Reference state $L_{+1}|h\rangle=0 \quad L_{0}|h\rangle=h|h\rangle$
- Hamiltonian $H=\alpha\left(L_{+1}+L_{-1}\right)$
- $\left|K_{n}\right\rangle \propto\left(L_{-1}\right)^{n}|h\rangle$

SU(1,1) K-complexity

- $\left[L_{0}, L_{ \pm 1}\right]=\mp L_{ \pm 1} \quad\left[L_{-1}, L_{+1}\right]=2 L_{0}$
- Reference state $L_{+1}|h\rangle=0 \quad L_{0}|h\rangle=h|h\rangle$
- Hamiltonian $H=\alpha\left(L_{+1}+L_{-1}\right)$
- $\left|K_{n}\right\rangle \propto\left(L_{-1}\right)^{n}|h\rangle$
- Spread complexity of the time-evolved reference state $|t\rangle=e^{i t H}|h\rangle$ given by $K(t)=2 h \sinh ^{2}(\alpha t)$

SU(1,1) Geodesic Volume

- States represented on target state manifold are $S U(1,1)$ coherent states $\mid z)=e^{z L_{-1}}|h\rangle$
- Fubini-Study metric $d s^{2}=\frac{2 h d z d \bar{z}}{(1-z \bar{z})^{2}}$

SU(1,1) Geodesic Volume

- States represented on target state manifold are $S U(1,1)$ coherent states $\mid z)=e^{z L_{-1}}|h\rangle$
- Fubini-Study metric $d s^{2}=\frac{2 h d z d \bar{z}}{(1-z \bar{z})^{2}}$
- Useful change of coordinates $z=e^{i \phi} \tanh (\rho)$
- $\cosh \left(\frac{\sqrt{2} L}{\sqrt{h}}\right)=\cosh \left(\rho_{f}\right) \cosh \left(\rho_{i}\right)-\cos (\Delta \phi) \sinh \left(\rho_{f}\right) \sinh \left(\rho_{i}\right)$
- Note that geodesics from the center all have $L=\sqrt{\frac{h}{2}} \rho_{f}$

SU(1,1) Geodesic Volume

- States represented on target state manifold are $\operatorname{SU}(1,1)$ coherent states $\mid z)=e^{z L_{-1}}|h\rangle$
- Fubini-Study metric $d s^{2}=\frac{2 h d z d \bar{z}}{(1-z \bar{z})^{2}}$
- Useful change of coordinates $z=e^{i \phi} \tanh (\rho)$
- $\cosh \left(\frac{\sqrt{2} L}{\sqrt{h}}\right)=\cosh \left(\rho_{f}\right) \cosh \left(\rho_{i}\right)-\cos (\Delta \phi) \sinh \left(\rho_{f}\right) \sinh \left(\rho_{i}\right)$
- Note that geodesics from the center all have $L=\sqrt{\frac{h}{2}} \rho_{f}$
- For this choice of Hamiltonian we have $\rho=2 \alpha t, \phi=\frac{\pi}{2}$

Geodesic Volume

$$
V=\int_{0}^{2 \alpha t} d \rho \int_{0}^{2 \pi} \sqrt{g}=\pi K(t)
$$

Geodesic Volume

- Note that a few special choices have been made - volume as measured from the center, specific choice of $s u(1,1)$ Hamiltonian

Geodesic Volume

- Note that a few special choices have been made - volume as measured from the center, specific choice of $s u(1,1)$ Hamiltonian
- In general the isometry generator of the Fubini-Study metric close on the same algebra as the group
- The K-complexity operator corresponds to some combination of the isometry generators
- For example, for this choice of Hamiltonian and reference state, we have $\hat{K}=L_{0}+h$

Geometric QM

- General relation between Killing vectors of the FS metric and generators [Ashtekar, Schilling, gr-qc/9706069]
- Quantum state space permits a Riemmanian metric, symplectic structure [Kibble, 1979], [Provost, Vallee, 1980]
- Given a family of states parametrised by a set of continuous coordinates $|s\rangle=\left|s_{1}, s_{2}, \cdots, s_{n}\right\rangle$
- $g_{i j}(s)=\left.\partial_{i} \partial_{j}^{\prime} \log \left|\left\langle s \mid s^{\prime}\right\rangle\right|\right|_{s=s^{\prime}}$ and $\sigma_{i j}(s)=\left.\frac{1}{2 i} \partial_{i} \partial_{j}^{\prime} \log \frac{\left\langle s \mid s^{\prime}\right\rangle}{\left\langle s^{\prime} \mid s\right\rangle}\right|_{s=s^{\prime}}$

Geometric QM

- General relation between Killing vectors of the FS metric and generators [Ashtekar, Schilling, gr-qc/9706069]
- Quantum state space permits a Riemmanian metric, symplectic structure [Kibble, 1979], [Provost, Vallee, 1980]
- Given a family of states parametrised by a set of continuous coordinates $|s\rangle=\left|s_{1}, s_{2}, \cdots, s_{n}\right\rangle$
- $g_{i j}(s)=\left.\partial_{i} \partial_{j}^{\prime} \log \left|\left\langle s \mid s^{\prime}\right\rangle\right|\right|_{s=s^{\prime}}$ and $\sigma_{i j}(s)=\left.\frac{1}{2 i} \partial_{i} \partial_{j}^{\prime} \log \frac{\left\langle s \mid s^{\prime}\right\rangle}{\left\langle s^{\prime} \mid s\right\rangle}\right|_{s=s^{\prime}}$
- If the states may be parametrised holomorphically

$$
g_{a \bar{b}}=g_{\bar{b} a}=\frac{1}{2} \partial_{a} \partial_{\bar{b}} \log (\bar{z} \mid z) \text { and } \sigma_{a \bar{b}}=-\sigma_{\bar{b} a}=i g_{a \bar{b}}
$$

Vector fields

- Consider an operator \hat{G} acting as $\hat{G}|s\rangle=\phi(s)|s\rangle-i X_{\hat{G}}|s\rangle$
- One can prove that $X_{\hat{G}}=k^{a} \partial_{a}+k^{\bar{a}} \partial_{\bar{a}}$
- $k^{a}=-\frac{1}{2} \sigma^{a \bar{b}} \partial_{\bar{b}}\langle G\rangle$ and $k^{\bar{a}}=-\frac{1}{2} \sigma^{\bar{a} b} \partial_{b}\langle G\rangle$

Vector fields

- Consider an operator \hat{G} acting as $\hat{G}|s\rangle=\phi(s)|s\rangle-i X_{\hat{G}}|s\rangle$
- One can prove that $X_{\hat{G}}=k^{a} \partial_{a}+k^{\bar{a}} \partial_{\bar{a}}$
- $k^{a}=-\frac{1}{2} \sigma^{a \bar{b}} \partial_{\bar{b}}\langle G\rangle$ and $k^{\bar{a}}=-\frac{1}{2} \sigma^{\bar{a} b} \partial_{b}\langle G\rangle$
- On the manifold of states the symmetries of the quantum states (associated with the Killing vectors) are related to expectation values of the symmetry generators

Dilaton Gravity

- Consider the following action
- $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g}(R+V) \eta+S_{\text {boundary }}$
- The equations of motion are $R=-V$ and $\nabla_{\mu} \nabla_{\nu} \eta-\frac{1}{2} g_{\mu \nu} V \eta=0$

Dilaton Gravity

- Consider the following action
- $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g}(R+V) \eta+S_{\text {boundary }}$
- The equations of motion are $R=-V$ and $\nabla_{\mu} \nabla_{\nu} \eta-\frac{1}{2} g_{\mu \nu} V \eta=0$
- Can be rewritten in a number of useful ways

Dilaton Gravity

- Consider the following action
- $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g}(R+V) \eta+S_{\text {boundary }}$
- The equations of motion are $R=-V$ and $\nabla_{\mu} \nabla_{\nu} \eta-\frac{1}{2} g_{\mu \nu} V \eta=0$
- Can be rewritten in a number of useful ways
- $\nabla_{\gamma}\left(-\frac{1}{2}(\nabla \eta)^{2}-V \frac{\eta^{2}}{4}\right)=0 \equiv \nabla_{\gamma} M$

Dilaton Gravity

- Consider the following action
- $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g}(R+V) \eta+S_{\text {boundary }}$
- The equations of motion are $R=-V$ and $\nabla_{\mu} \nabla_{\nu} \eta-\frac{1}{2} g_{\mu \nu} V \eta=0$
- Can be rewritten in a number of useful ways
- $\nabla_{\gamma}\left(-\frac{1}{2}(\nabla \eta)^{2}-V \frac{\eta^{2}}{4}\right)=0 \equiv \nabla_{\gamma} M$
- $\nabla_{\mu} k_{\nu}+\nabla_{\nu} k_{\mu}=0 \quad ; \quad k^{\mu}=-\frac{1}{2} \sigma^{\mu \nu} \nabla_{\nu} \eta$
- The dilaton must be the expectation value of a symmetry generator!

Low rank algebras

- $L_{+}=L_{-}^{\dagger} \quad ; \quad\left[\left[L_{-}, L_{+}\right], L_{ \pm}\right]= \pm 2 f L_{ \pm}$
- Highest weight state $L_{-}|w\rangle=0,\left[L_{-}, L_{+}\right]|w\rangle=w_{0}|w\rangle$
- An arbitrary group element action may be written as $e^{i\left(a_{+} L_{+}+a_{+}^{*} L_{-}+a_{0}\left[L_{-}, L_{+}\right]\right)}|w\rangle=N e^{z L_{+}}|w\rangle$
- The manifold of target states is a two-dimensional manifold and each state is in a one-to-one correspondence with elements of $G /\left(\left[L_{-}, L_{+}\right]\right)$

Fubini-Study metric

- $d s^{2}=\frac{2 w_{0}}{\left(1-f_{z} \bar{z}\right)^{2}}$
- Constant scalar curvature $R=-\frac{4 f}{w_{0}}$
- We can compute the geodesic distance between any two points represented on the manifold

Fubini-Study metric

- $d s^{2}=\frac{2 w_{0}}{(1-f z \bar{z})^{2}}$
- Constant scalar curvature $R=-\frac{4 f}{w_{0}}$
- We can compute the geodesic distance between any two points represented on the manifold
- For spread complexity the most general thing we can do is generate the Krylov basis from some state $\left|\psi_{z_{0}}\right\rangle=U\left(\bar{z}_{0}, z_{0}\right)|w\rangle$
- $U\left(\bar{z}_{0}, z_{0}\right)=e^{z_{0} L_{+}} e^{\frac{1}{2 f} \log \left(1-f \bar{z}_{0} z_{0}\right)\left[L_{-}, L_{+}\right]} e^{-\bar{z}_{0} L_{-}}$

Spread Complexity

- Krylov basis $\left|K_{n}\right\rangle=\frac{U\left(\bar{z}_{0}, z_{0}\right)\left(L_{+}\right)^{n}|w\rangle}{\sqrt{\langle w|\left(L_{-}\right)^{n}\left(L_{+}\right)^{n}|w\rangle}}$
- $\mid z)=U\left(\bar{z}_{0}, z_{0}\right) e^{z^{\prime} L_{+}} \quad z^{\prime}=\frac{z-z_{0}}{1-f z \bar{z}_{0}}$

Spread Complexity

- Krylov basis $\left|K_{n}\right\rangle=\frac{U\left(\bar{z}_{0}, z_{0}\right)\left(L_{+}\right)^{n}|w\rangle}{\sqrt{\langle w|\left(L_{-}\right)^{n}\left(L_{+}\right)^{n}|w\rangle}}$
- $\mid z)=U\left(\bar{z}_{0}, z_{0}\right) e^{z^{\prime} L_{+}} \quad z^{\prime}=\frac{z-z_{0}}{1-f z \bar{z}_{0}}$
- $\frac{(\bar{z}|\hat{K}| z)}{(\bar{z} \mid z)}=z^{\prime} \partial_{z^{\prime}} \log \left(\left(\bar{z}^{\prime} \mid z^{\prime}\right)\right)$

Spread Complexity

- Krylov basis $\left|K_{n}\right\rangle=\frac{U\left(\bar{z}_{0}, z_{0}\right)\left(L_{+}\right)^{n}|w\rangle}{\sqrt{\langle w|\left(L_{-}\right)^{n}\left(L_{+}\right)^{n}|w\rangle}}$
- $\mid z)=U\left(\bar{z}_{0}, z_{0}\right) e^{z^{\prime} L_{+}} \quad z^{\prime}=\frac{z-z_{0}}{1-f z \bar{z}_{0}}$
- $\frac{(\bar{z}|\hat{K}| z)}{(\bar{z} \mid z)}=z^{\prime} \partial_{z^{\prime}} \log \left(\left(\bar{z}^{\prime} \mid z^{\prime}\right)\right)$
- One finds $K(|z\rangle ; H, U|w\rangle)=\frac{w_{0}\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)}{\left(1-f \bar{z}_{0} z_{0}\right)(1-f \bar{z} \bar{z})}$

Spread Complexity as Dilaton Solutions

- Dilaton action $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g} \eta\left(R+\frac{4 f}{w_{0}}\right)$
- The classical solution for the metric is now the FS metric quoted previously

Spread Complexity as Dilaton Solutions

- Dilaton action $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g} \eta\left(R+\frac{4 f}{w_{0}}\right)$
- The classical solution for the metric is now the FS metric quoted previously
- The general dilaton solution is given by $\eta=\frac{c_{1} z+c_{2} \bar{z}+c_{3}(f z \bar{z}+1)}{1-f_{z} \bar{z}}$
- We need to supplement this with boundary conditions

Spread Complexity as Dilaton Solutions

- Dilaton action $S=\frac{1}{2 \pi} \int d^{2} x \sqrt{g} \eta\left(R+\frac{4 f}{w_{0}}\right)$
- The classical solution for the metric is now the FS metric quoted previously
- The general dilaton solution is given by $\eta=\frac{c_{1} z+c_{2} \bar{z}+c_{3}\left(f_{z} \bar{z}+1\right)}{1-f_{z} \bar{z}}$
- We need to supplement this with boundary conditions
- The crucial condition is that $\left.\partial_{z} \eta\right|_{z=z_{0}}=0$
- This gives $\eta=2 c_{3} f \frac{2\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)}{\left(1+f z_{0} \bar{z}_{0}\right)(1-f z \bar{z})}+\eta_{0}$
- This is the spread complexity up to an additive constant and overall factor!

Spread Complexity as Dilaton Solutions

- Physically, the boundary condition imposes that the complexity is minimised at the appropriate reference state
- The dilaton we have chosen matches exactly with cost factors of the form $\hat{K}=\sum_{n}(m n+c)\left|K_{n}\right\rangle\left\langle K_{n}\right|$

Spread Complexity as Dilaton Solutions

- Physically, the boundary condition imposes that the complexity is minimised at the appropriate reference state
- The dilaton we have chosen matches exactly with cost factors of the form $\hat{K}=\sum_{n}(m n+c)\left|K_{n}\right\rangle\left\langle K_{n}\right|$
- Though we have chosen the minimal complexity state we still need to specify its value. And we need to determine the scaling factor m

Spread Complexity as Dilaton Solutions

- Physically, the boundary condition imposes that the complexity is minimised at the appropriate reference state
- The dilaton we have chosen matches exactly with cost factors of the form $\hat{K}=\sum_{n}(m n+c)\left|K_{n}\right\rangle\left\langle K_{n}\right|$
- Though we have chosen the minimal complexity state we still need to specify its value. And we need to determine the scaling factor m
- In terms of JT gravity quantities the matching of the scaling is determined by setting $M R=-1$

Outlook

- The connection established here related spread complexity for low rank directly to quantities in a theory of 2d gravity

Outlook

- The connection established here related spread complexity for low rank directly to quantities in a theory of 2d gravity
- Are the fluctuations of the dilaton captured by some notion related to complexity? What about the boundary action of the dilaton?
- Dilaton models with non-linear potential terms - are these related to different choices of c_{n} ?
- Does this picture continue to hold in higher dimensions?

Outlook

- The connection established here related spread complexity for low rank directly to quantities in a theory of 2d gravity
- Are the fluctuations of the dilaton captured by some notion related to complexity? What about the boundary action of the dilaton?
- Dilaton models with non-linear potential terms - are these related to different choices of c_{n} ?
- Does this picture continue to hold in higher dimensions?
- Can the construction be altered to give a bulk /boundary interpretation?
- Dilatons have a natural interpretation of (varying) volume of compactified dimensions. Is this a way to get a handle on the complexity $=$ volume conjecture?

Thank you for your attention!

Research is supported by the "Quantum Technologies for Sustainable Development" grant from the National Institute for Theoretical and Computational Sciences

