0 000000 00000 000000	lotivation O	Background 000000	K-Complexity as Volume	Dilaton Gravity 0000000
-----------------------	-----------------	----------------------	------------------------	----------------------------

Towards a gravity dual for spread complexity

Jaco van Zyl

based on [A Chattopadhyay, A Mitra, HJRvZ, 2302.10489]

24 April 2023, University of Cape Town

Outlook

1 Motivation

- 2 Background
- 3 K-Complexity as Volume
- 4 Dilaton Gravity

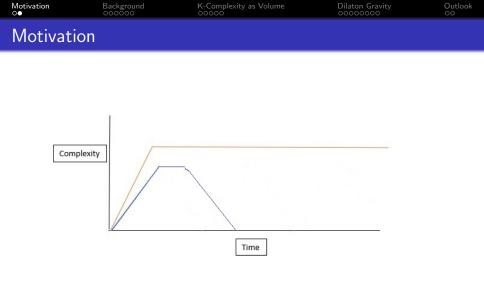
Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
●○	000000		00000000	00
Motivatior	า			

- Complexity is related to the holographic description of black holes
- Growth of complexity = growth of black hole interiors
- Thermofield double is a famous example of this

[Chapman et al, 1810.05151]

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
●0	000000		00000000	00
Motivatior	1			

- Complexity is related to the holographic description of black holes
- Growth of complexity = growth of black hole interiors
- Thermofield double is a famous example of this [Chapman et al, 1810.05151]
- Complexity can be used as a diagnostic of quantum chaos [Chapman, Pelicastro, 2110.14672]
- Supplements diagnostics such as SFF, OTOC, Loschmidt echo...



[Balasubramanian, DeCross, Kar, Li, Parrikar, 2101.02209]

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $|\phi_r\rangle$, $|\phi_t\rangle$, $\{U_1, U_2, \cdots, U_n\}$, $g(U_1, U_2, \cdots, U_n)$

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $|\phi_r\rangle$, $|\phi_t\rangle$, $\{U_1, U_2, \cdots, U_n\}$, $g(U_1, U_2, \cdots, U_n)$
- E.g. $U_1 U_2 U_1 U_3 (U_1)^3 U_2 |\phi_r\rangle = U_3 U_1 U_2 U_1 U_3 (U_1)^3 U_2 U_3 |\phi_r\rangle$, "complexity = 8"

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	●00000		00000000	00
Complex	ity			

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $|\phi_r\rangle$, $|\phi_t\rangle$, $\{U_1, U_2, \cdots, U_n\}$, $g(U_1, U_2, \cdots, U_n)$
- E.g. $U_1 U_2 U_1 U_3 (U_1)^3 U_2 |\phi_r\rangle = U_3 U_1 U_2 U_1 U_3 (U_1)^3 U_2 U_3 |\phi_r\rangle$, "complexity = 8"
- Discrete notion of complexity closely related to quantum computational setups
- We will, however, be interested in a continuous notion of complexity

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	0●0000		00000000	00
Nielsen (Complexity			

• Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]

DGASLAD

- E.g. SU(2): Gates $U = e^{i(s_1J_1+s_2J_2+s_3J_3)}$
- Target states: $|\phi_t(s_1, s_2, ..., s_n)\rangle = U(s_1, \cdots, s_n)|\phi_r\rangle$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	0●0000		00000000	00
Nielsen	Complexity			

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. SU(2): Gates $U = e^{i(s_1J_1+s_2J_2+s_3J_3)}$
- Target states: $|\phi_t(s_1, s_2, ..., s_n)\rangle = U(s_1, \cdots, s_n)|\phi_r\rangle$
- We have a manifold of target states on which one can define a metric

A D N A 目 N A E N A E N A B N A C N

- Complexity = shortest distance connecting points
- Can introduce a circuit parameter $s_i = s_i(\sigma)$

- Two examples of metrics
- F_1 cost function: $\mathcal{F}_1 d\sigma = |\langle \phi_r | U^{\dagger} dU | \phi_r \rangle|$

- Two examples of metrics
- F_1 cost function: $\mathcal{F}_1 d\sigma = |\langle \phi_r | U^{\dagger} dU | \phi_r \rangle|$
- $ds_{FS}^2 = \langle \phi_r | dU^{\dagger} dU | \phi_r \rangle \langle \phi_r | dU^{\dagger} U | \phi_r \rangle | \langle \phi_r | U^{\dagger} dU | \phi_r \rangle$

DGASLAB

э.

A D > A P > A D > A D >

• Group symmetries are encoded as metric isometries

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	00●000		00000000	00
Nielsen	Complexity			

- Two examples of metrics
- F_1 cost function: $\mathcal{F}_1 d\sigma = |\langle \phi_r | U^{\dagger} dU | \phi_r \rangle|$
- $ds_{FS}^2 = \langle \phi_r | dU^{\dagger} dU | \phi_r \rangle \langle \phi_r | dU^{\dagger} U | \phi_r \rangle | \langle \phi_r | U^{\dagger} dU | \phi_r \rangle$
- Group symmetries are encoded as metric isometries
- \mathcal{F}_1 : $F_i = \partial_i \left(\langle \phi_t(s'_1, s'_2, \cdots, s'_n) | \phi_t(s_1, s_2, ..., s_n) \rangle \right) |_{s'=s}$
- FS metric: $g_{ij} = \partial_i \partial'_j \log \left(\langle \phi_t(s'_1, s'_2, \cdots, s'_n) | \phi_t(s_1, s_2, \dots, s_n) \rangle \right) \Big|_{s'=s}$

- The overlap $\langle \phi_r | U^\dagger(s') U(s) | \phi_r
 angle$ is thus a key quantity
- The states $U(s) |\phi_r\rangle$ are generalized coherent states

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000●00		0000000	00
Nielsen (Complexity			

- The overlap $\langle \phi_r | U^\dagger(s') U(s) | \phi_r
 angle$ is thus a key quantity
- The states $U(s)|\phi_r
 angle$ are generalized coherent states
- Stability subgroup $H \subset G$ such that $U_h |\phi_r
 angle = e^{i \phi_h} |\phi_r
 angle$
- Bigger stability subgroup leads to simpler expressions (especially for FS metric)

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

3

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000€00		00000000	00
Nielsen	Complexity			

- The overlap $\langle \phi_r | U^\dagger(s') U(s) | \phi_r
 angle$ is thus a key quantity
- The states $U(s)|\phi_r
 angle$ are generalized coherent states
- Stability subgroup $H \subset G$ such that $U_h |\phi_r
 angle = e^{i \phi_h} |\phi_r
 angle$
- Bigger stability subgroup leads to simpler expressions (especially for FS metric)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Manifold of states \Leftrightarrow group elements of G/H

- A notion of complexity without the need to specify gates
- Given a Hamiltonian and reference state one first builds the basis $|O_n) = H^n |\phi_r\rangle$

- A notion of complexity without the need to specify gates
- Given a Hamiltonian and reference state one first builds the basis $|O_n) = H^n |\phi_r\rangle$
- From a Gram-Schmidt process one then obtains the Krylov basis $|K_n\rangle$
- The K-complexity (or spread complexity) of a state is then given by $C_K = \sum_n n \langle \phi_t | K_n \rangle \langle K_n | \phi_t \rangle \equiv \langle \phi_t | \hat{K} | \phi_t \rangle$
- The Krylov basis provides an **ordered** basis for the Hilbert space of target states

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Given some basis for the Hilbert space of target space in increasing complexity $|B_n\rangle$
- We can define complexity as $C = \sum_n c_n \langle \phi_t | B_n \rangle \langle B_n | \phi_t \rangle$
- With *c_n* strictly increasing

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	00000●		00000000	00
Krylov (Complexity			

- Given some basis for the Hilbert space of target space in increasing complexity $|B_n\rangle$
- We can define complexity as $C = \sum_n c_n \langle \phi_t | B_n \rangle \langle B_n | \phi_t \rangle$
- With c_n strictly increasing
- The choice $c_n = n$ minimises the complexity of the time-evolved reference state

DGASLAB

э

(日)

- Which notion of complexity is the right one?
- Many ambiguities in the definition of complexity

K-Complexity as Volume

- Which notion of complexity is the right one?
- Many ambiguities in the definition of complexity
- Are these different notions of complexity related?
- Krylov complexity related to the geodesic volume [Caputa, Magan, Patramanis, arXiv:2109.03824]

DGASLAB

(日)

 Motivation
 Background
 K-Complexity as Volume
 Dilaton Gravity
 Outlook

 SU(1,1)
 K-complexity
 SU(1,1)
 K-complexity
 SU(1,1)

DGASLAB

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $[L_0, L_{\pm 1}] = \mp L_{\pm 1}$ $[L_{-1}, L_{+1}] = 2L_0$
- Reference state $L_{+1}|h
 angle=0$ $L_{0}|h
 angle=h|h
 angle$
- Hamiltonian $H = \alpha(L_{+1} + L_{-1})$

 Motivation
 Background
 K-Complexity as Volume
 Dilaton Gravity
 Outlook

 SU(1,1)
 K-complexity
 SU(1,1)
 K-complexity
 SU(1,1)

DGASLAB

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $[L_0, L_{\pm 1}] = \mp L_{\pm 1}$ $[L_{-1}, L_{+1}] = 2L_0$
- Reference state $L_{+1}|h
 angle=0$ $L_{0}|h
 angle=h|h
 angle$
- Hamiltonian $H = \alpha(L_{+1} + L_{-1})$
- $|K_n
 angle \propto (L_{-1})^n|h
 angle$

- $[L_0, L_{\pm 1}] = \mp L_{\pm 1}$ $[L_{-1}, L_{+1}] = 2L_0$
- Reference state $L_{+1}|h
 angle=0$ $L_{0}|h
 angle=h|h
 angle$
- Hamiltonian $H = \alpha(L_{+1} + L_{-1})$
- $|K_n
 angle \propto (L_{-1})^n|h
 angle$
- Spread complexity of the time-evolved reference state $|t\rangle = e^{itH}|h\rangle$ given by $K(t) = 2h \sinh^2(\alpha t)$

- States represented on target state manifold are SU(1,1) coherent states $|z) = e^{zL_{-1}}|h\rangle$
- Fubini-Study metric $ds^2 = \frac{2hdzd\bar{z}}{(1-z\bar{z})^2}$

- States represented on target state manifold are SU(1,1) coherent states $|z)=e^{zL_{-1}}|h
 angle$
- Fubini-Study metric $ds^2 = \frac{2hdzd\bar{z}}{(1-z\bar{z})^2}$
- Useful change of coordinates $z = e^{i\phi} \tanh(\rho)$
- $\cosh(\frac{\sqrt{2}L}{\sqrt{h}}) = \cosh(\rho_f) \cosh(\rho_i) \cos(\Delta \phi) \sinh(\rho_f) \sinh(\rho_i)$

A D N A 目 N A E N A E N A B N A C N

• Note that geodesics from the center all have $L = \sqrt{\frac{h}{2}} \rho_f$

- States represented on target state manifold are SU(1,1) coherent states $|z)=e^{zL_{-1}}|h
 angle$
- Fubini-Study metric $ds^2 = \frac{2hdzd\bar{z}}{(1-z\bar{z})^2}$
- Useful change of coordinates $z = e^{i\phi} \tanh(\rho)$

•
$$\cosh(\frac{\sqrt{2}L}{\sqrt{h}}) = \cosh(\rho_f) \cosh(\rho_i) - \cos(\Delta\phi) \sinh(\rho_f) \sinh(\rho_i)$$

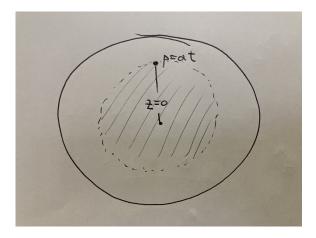
- Note that geodesics from the center all have $L = \sqrt{\frac{h}{2}} \rho_f$
- For this choice of Hamiltonian we have $\rho = 2\alpha t$, $\phi = \frac{\pi}{2}$

イロト 不得 トイヨト イヨト

-

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000	000●0	00000000	00
Geodesic	Volume			

$$V = \int_0^{2\alpha t} d\rho \int_0^{2\pi} \sqrt{g} = \pi K(t)$$



æ

・ロト ・四ト ・ヨト ・ヨト

 Note that a few special choices have been made - volume as measured from the center, specific choice of su(1,1) Hamiltonian

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000	0000●	00000000	00
Geodesic	c Volume			

- Note that a few special choices have been made volume as measured from the center, specific choice of su(1,1) Hamiltonian
- In general the isometry generator of the Fubini-Study metric close on the same algebra as the group
- The K-complexity operator corresponds to some combination of the isometry generators

э

• For example, for this choice of Hamiltonian and reference state, we have $\hat{K} = L_0 + h$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		•0000000	00
Geometric	QM			

- General relation between Killing vectors of the FS metric and generators [Ashtekar, Schilling, gr-qc/9706069]
- Quantum state space permits a Riemmanian metric, symplectic structure [Kibble, 1979], [Provost, Vallee, 1980]
- Given a family of states parametrised by a set of continuous coordinates $|s
 angle=|s_1,s_2,\cdots,s_n
 angle$

•
$$g_{ij}(s) = \partial_i \partial'_j \log |\langle s|s' \rangle| \Big|_{s=s'}$$
 and $\sigma_{ij}(s) = \frac{1}{2i} \partial_i \partial'_j \log \frac{\langle s|s' \rangle}{\langle s'|s \rangle} \Big|_{s=s'}$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		•0000000	00
Geometric	QM			

- General relation between Killing vectors of the FS metric and generators [Ashtekar, Schilling, gr-qc/9706069]
- Quantum state space permits a Riemmanian metric, symplectic structure [Kibble, 1979], [Provost, Vallee, 1980]
- Given a family of states parametrised by a set of continuous coordinates $|s
 angle=|s_1,s_2,\cdots,s_n
 angle$

•
$$g_{ij}(s) = \partial_i \partial'_j \log |\langle s|s' \rangle| \Big|_{s=s'}$$
 and $\sigma_{ij}(s) = \frac{1}{2i} \partial_i \partial'_j \log \frac{\langle s|s' \rangle}{\langle s'|s \rangle} \Big|_{s=s'}$

A D N A 目 N A E N A E N A B N A C N

• If the states may be parametrised holomorphically $g_{a\bar{b}} = g_{\bar{b}a} = \frac{1}{2} \partial_a \partial_{\bar{b}} \log(\bar{z}|z)$ and $\sigma_{a\bar{b}} = -\sigma_{\bar{b}a} = ig_{a\bar{b}}$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		o●oooooo	00
Vector f	elds			

- Consider an operator \hat{G} acting as $\hat{G}|s
 angle=\phi(s)|s
 angle-i\!X_{\hat{G}}|s
 angle$
- One can prove that $X_{\hat{G}} = k^a \partial_a + k^{ar{a}} \partial_{ar{a}}$

•
$$k^a = -\frac{1}{2}\sigma^{a\bar{b}}\partial_{\bar{b}}\langle G \rangle$$
 and $k^{\bar{a}} = -\frac{1}{2}\sigma^{\bar{a}b}\partial_b\langle G \rangle$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		0●000000	00
Vector f	ields			

- Consider an operator \hat{G} acting as $\hat{G}|s
 angle=\phi(s)|s
 angle-iX_{\hat{G}}|s
 angle$
- One can prove that $X_{\hat{G}}=k^a\partial_a+k^{ar{a}}\partial_{ar{a}}$

•
$$k^a = -\frac{1}{2}\sigma^{a\bar{b}}\partial_{\bar{b}}\langle G \rangle$$
 and $k^{\bar{a}} = -\frac{1}{2}\sigma^{\bar{a}b}\partial_b\langle G \rangle$

• On the manifold of states the symmetries of the quantum states (associated with the Killing vectors) are related to expectation values of the symmetry generators

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00●00000	00
Dilaton (Gravity			

DGASLAD

€ 990

ヘロト ヘロト ヘヨト ヘヨト

- Consider the following action
- $S = rac{1}{2\pi}\int d^2x \sqrt{g}(R+V)\eta + S_{boundary}$
- The equations of motion are R = -V and $\nabla_{\mu} \nabla_{\nu} \eta \frac{1}{2} g_{\mu\nu} V \eta = 0$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00●00000	00
Dilaton (Gravity			

- Consider the following action
- $S = rac{1}{2\pi}\int d^2x \sqrt{g}(R+V)\eta + S_{boundary}$
- The equations of motion are R = -V and $\nabla_{\mu} \nabla_{\nu} \eta \frac{1}{2} g_{\mu\nu} V \eta = 0$
- Can be rewritten in a number of useful ways

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00●00000	00
Dilaton (Gravity			

◆日 > < 同 > < 国 > < 国 >

- Consider the following action
- $S = rac{1}{2\pi}\int d^2x \sqrt{g}(R+V)\eta + S_{boundary}$
- The equations of motion are R = -V and $\nabla_{\mu} \nabla_{\nu} \eta \frac{1}{2} g_{\mu\nu} V \eta = 0$
- Can be rewritten in a number of useful ways

•
$$\nabla_{\gamma}\left(-\frac{1}{2}(\nabla\eta)^2-V\frac{\eta^2}{4}\right)=0\equiv\nabla_{\gamma}M$$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00●00000	00
Dilaton (Gravity			

- Consider the following action
- $S = rac{1}{2\pi}\int d^2x \sqrt{g}(R+V)\eta + S_{boundary}$
- The equations of motion are R = -V and $\nabla_{\mu} \nabla_{\nu} \eta \frac{1}{2} g_{\mu\nu} V \eta = 0$
- Can be rewritten in a number of useful ways

•
$$\nabla_{\gamma}\left(-\frac{1}{2}(\nabla\eta)^2-V\frac{\eta^2}{4}\right)=0\equiv\nabla_{\gamma}M$$

- $abla_{\mu}k_{\nu} +
 abla_{\nu}k_{\mu} = 0$; $k^{\mu} = -\frac{1}{2}\sigma^{\mu\nu}
 abla_{\nu}\eta$
- The dilaton must be the expectation value of a symmetry generator!

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		000●0000	00
low ran	k algebras			

- $L_{\pm} = L_{\pm}^{\dagger}$; $[[L_{\pm}, L_{\pm}], L_{\pm}] = \pm 2fL_{\pm}$
- Highest weight state $L_{-}|w
 angle=$ 0, $[L_{-},L_{+}]|w
 angle=w_{0}|w
 angle$
- An arbitrary group element action may be written as $e^{i(a_+L_++a^*_+L_-+a_0[L_-,L_+])}|w\rangle = Ne^{zL_+}|w\rangle$
- The manifold of target states is a two-dimensional manifold and each state is in a one-to-one correspondence with elements of $G/([L_-, L_+])$

人口 医水黄 医水黄 医水黄素 化甘油

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000000	00
Fubini-Stu	dy metric			

•
$$ds^2 = \frac{2w_0}{(1-fz\bar{z})^2}$$

- Constant scalar curvature $R = -\frac{4f}{w_0}$
- We can compute the geodesic distance between any two points represented on the manifold

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		0000●000	00
Fubini-S	tudv metric			

•
$$ds^2 = \frac{2w_0}{(1-fz\bar{z})^2}$$

- Constant scalar curvature $R = -\frac{4f}{w_0}$
- We can compute the geodesic distance between any two points represented on the manifold
- For spread complexity the most general thing we can do is generate the Krylov basis from some state $|\psi_{z_0}\rangle = U(\bar{z}_0, z_0)|w\rangle$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$U(\bar{z}_0, z_0) = e^{z_0 L_+} e^{\frac{1}{2f} \log(1 - f \bar{z}_0 z_0)[L_-, L_+]} e^{-\bar{z}_0 L_-}$$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000●00	00
Spread Co	omplexity			

• Krylov basis
$$|K_n\rangle = \frac{U(\bar{z}_0, z_0)(L_+)^n |w\rangle}{\sqrt{\langle w | (L_-)^n (L_+)^n |w\rangle}}$$

• $|z) = U(\bar{z}_0, z_0) e^{z'L_+}$ $z' = \frac{z-z_0}{1-fz\bar{z}_0}$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000000	00
Spread C	omplexity			

• Krylov basis
$$|K_n\rangle = \frac{U(\bar{z}_0, z_0)(L_+)^n |w\rangle}{\sqrt{\langle w | (L_-)^n (L_+)^n |w \rangle}}$$

• $|z) = U(\bar{z}_0, z_0) e^{z'L_+} \quad z' = \frac{z - z_0}{1 - fz \bar{z}_0}$
• $\frac{(\bar{z} |\hat{K}|z)}{(\bar{z}|z)} = z' \partial_{z'} \log((\bar{z}' | z'))$

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000●00	00
Spread C	omplexity			

• Krylov basis
$$|K_n\rangle = \frac{U(\bar{z}_0, z_0)(L_+)^n |w\rangle}{\sqrt{\langle w | (L_-)^n (L_+)^n |w \rangle}}$$

• $|z) = U(\bar{z}_0, z_0) e^{z' L_+} \quad z' = \frac{z - z_0}{1 - f z \bar{z}_0}$

•
$$\frac{(\bar{z}|\hat{K}|z)}{(\bar{z}|z)} = z'\partial_{z'}\log((\bar{z}'|z'))$$

• One finds
$$K(|z\rangle; H, U|w\rangle) = \frac{w_0(z-z_0)(\bar{z}-\bar{z}_0)}{(1-f\bar{z}_0z_0)(1-f\bar{z}z)}$$

• Dilaton action
$$S = \frac{1}{2\pi} \int d^2 x \sqrt{g} \eta \left(R + \frac{4f}{w_0} \right)$$

 The classical solution for the metric is now the FS metric quoted previously

• Dilaton action
$$S = \frac{1}{2\pi} \int d^2 x \sqrt{g} \eta \left(R + \frac{4f}{w_0} \right)$$

- The classical solution for the metric is now the FS metric quoted previously
- The general dilaton solution is given by $\eta = \frac{c_1 z + c_2 \bar{z} + c_3 (fz \bar{z} + 1)}{1 fz \bar{z}}$
- We need to supplement this with boundary conditions

• Dilaton action
$$S = \frac{1}{2\pi} \int d^2 x \sqrt{g} \eta \left(R + \frac{4f}{w_0} \right)$$

- The classical solution for the metric is now the FS metric quoted previously
- The general dilaton solution is given by $\eta = \frac{c_1 z + c_2 \bar{z} + c_3 (f z \bar{z} + 1)}{1 f z \bar{z}}$
- We need to supplement this with boundary conditions
- The crucial condition is that $\left.\partial_z\eta\right|_{z=z_0}=0$
- This gives $\eta = 2c_3 f \frac{2_0(z-z_0)(\bar{z}-\bar{z}_0)}{(1+fz_0\bar{z}_0)(1-fz\bar{z})} + \eta_0$
- This is the spread complexity up to an additive constant and overall factor!

- Physically, the boundary condition imposes that the complexity is minimised at the appropriate reference state
- The dilaton we have chosen matches exactly with cost factors of the form $\hat{K} = \sum_{n} (mn + c) |K_n\rangle \langle K_n|$

- Physically, the boundary condition imposes that the complexity is minimised at the appropriate reference state
- The dilaton we have chosen matches exactly with cost factors of the form $\hat{K} = \sum_{n} (mn + c) |K_n\rangle \langle K_n|$
- Though we have chosen the minimal complexity state we still need to specify its value. And we need to determine the scaling factor *m*

- Physically, the boundary condition imposes that the complexity is minimised at the appropriate reference state
- The dilaton we have chosen matches exactly with cost factors of the form $\hat{K} = \sum_{n} (mn + c) |K_n\rangle \langle K_n|$
- Though we have chosen the minimal complexity state we still need to specify its value. And we need to determine the scaling factor *m*
- In terms of JT gravity quantities the matching of the scaling is determined by setting MR = -1

A D N A 目 N A E N A E N A B N A C N

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000000	●0
Outlook				

• The connection established here related spread complexity for low rank directly to quantities in a theory of 2d gravity

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000000	●0
Outlook				

- The connection established here related spread complexity for low rank directly to quantities in a theory of 2d gravity
- Are the fluctuations of the dilaton captured by some notion related to complexity? What about the boundary action of the dilaton?
- Dilaton models with non-linear potential terms are these related to different choices of c_n ?
- Does this picture continue to hold in higher dimensions?

A D > A P > A B > A B >

э

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		00000000	●0
Outlook				

- The connection established here related spread complexity for low rank directly to quantities in a theory of 2d gravity
- Are the fluctuations of the dilaton captured by some notion related to complexity? What about the boundary action of the dilaton?
- Dilaton models with non-linear potential terms are these related to different choices of c_n ?
- Does this picture continue to hold in higher dimensions?
- Can the construction be altered to give a bulk /boundary interpretation?
- Dilatons have a natural interpretation of (varying) volume of compactified dimensions. Is this a way to get a handle on the complexity = volume conjecture?

Motivation	Background	K-Complexity as Volume	Dilaton Gravity	Outlook
00	000000		0000000	○●

Thank you for your attention!

Research is supported by the "Quantum Technologies for Sustainable Development" grant from the National Institute for Theoretical and Computational Sciences

