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Life cycle of  a star
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Properties of  compact objects
White dwarf Neutron star Black hole

(Stellar)
Black hole

(Supermassive)

Mass

Progenitor mass -

Radius

Central density - -

Surface
Temperature - -

∼ M⊙ ∼ M⊙ ∼ 3 − 100 M⊙ > 106 M⊙

≲ 10 M⊙ < 10 − 25 M⊙ > 25 M⊙

≳ 1000 km ∼ 10 km 2GM/c2 2GM/c2

≲ 2 × 1010 g cm−3 ≲ 1014 − 1015 g cm−3

∼ 104 − 105 K ∼ 106 − 107 K
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Degenerate electron gas
Electrons become degenerate when all the energy states below the Fermi 

level are filled. 

Electrons are Fermions. 

Fermi-Dirac distribution: (Assume ) kBT ≪ EF

f(E) =
1

e(E−EF)/kBT + 1
≈ {1 E < EF

0 E > EF
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Degenerate electron gas
f(E) =

1
e(E−EF)/kBT + 1

≈ {1 E < EF

0 E > EF
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Degenerate electron gas
 

White dwarfs are assumed to be cold. 

Zero temperature calculation is a good assumption.

f(E) =
1

e(E−EF)/kBT + 1
≈ {1 E < EF

0 E > EF
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Degenerate electron gas
Number density of electrons:  

Degenerate pressure: 

ne = ∫
pF

0

8π
h3

p2dp =
8π
3h3

p3
F .

P =
8π
3h3 ∫

pF

0
vp3dp =

8π
3h3 ∫

pF

0

p4c2

p2c2 + m2
e c4

dp

Non-relativistic electron gas:  p2c2 + m2
e c4 ≈ mec2

Relativistic electron gas:  p2c2 + m2
e c4 ≈ pc

P ∝ ρ5/3

P ∝ ρ4/3
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Chandrasekhar equation of  state
P =

πm4
e c5

3h3 [x(2x2 − 3) x2 + 1 + 3 sinh−1 x]
ρ =

8πμemp(mec)3

3h3
x3, x =

pF

mec
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• Pressure balance (Newtonian): . 

•
Pressure balance (GR): . 

• Mass estimate: .

dP
dr

= −
GMρ

r2

dP
dr

= −
G
r2

(P + ρc2)

1 − 2GM
c2r

( 4πr3P
c4

+
M
c2 )

dM
dr

= 4πr2ρ



White dwarf
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• Boundary conditions: 
 

 
M(r = 0) = 0, M(r = R*) = M*
ρ(r = 0) = ρc, P(r = 0) = Pc
ρ(r = R*) = 0, P(r = R*) = 0



Structure of  WD/NS
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MCh =

6
32π ( hc

G )
3/2

( 2
μe )

2
2.018

m2
pS. Chandrasekhar (1935)



Type Ia supernovae
• If a WD has a binary partner, it starts pulling out 

matter. 
• At Chandrasekhar mass-limit, it bursts out to 

produce type Ia supernova. 
• Type Ia supernovae have similar behaviours, 

therefore they are used as standard candles in 
cosmology.

• Absence of 
hydrogen. 

• Strong ionised 
silicon 
absorption line.
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Peculiar SNeIa
Recent observations show some 

peculiar SNeIa with extremely high 

luminosity. 

Their light curves also show different 

trend. 

 

Chandrasekhar mass-limit is violated.

L ∝ MWDc2 + mv2 ⟹ MWD ≈ 2.1 − 2.8M⊙
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Howell et al. Nature 443 (2006) 308



Neutron star
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Massive neutron star
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GW190817 event: Merger of a  

black hole with a  object. 

The secondary object is the highest 

measured massive NS or the lightest 

black hole. 

Assuming it to be a NS, lower bound 

on maximum NS has to be .

23 M⊙

2.5 − 2.67 M⊙

∼ 2.1 M⊙

Most, Papenfort, Weih & Rezzolla, 
MNRAS-Letters 499 (2020) L82



Massive WD and NS
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Rotation, magnetic fields, modified theory of general relativity, 

noncommutative geometry, etc. 

Each theory gives different mass-radius relation. 

GW astronomy in the future can be relevant to single out the theories.



Rotating WD/NS
• Rotation can increase the mass of a WD/NS. 

• Ostriker & Hartwick in 1968 showed that rotation alone can increase the mass of a WD up to . 

• Rezzolla and collaborators showed that rotation can increase the mass of a NS upto 1.2 times of its 

original value. 

• Rotation turns a spherical WD/NS to an oblate shaped WD/NS.

∼ 1.8M⊙
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Magnetic fields
Microscopic effect: Formation of Landau levels. 

E2 = p2
z c2 + m2

e c4 (1 + 2ν
B
Bc ), Bc = 4.414 × 1013 G
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Das & Mukhopadhyay (2013)
PRL 110, 071102Macroscopic effect: Shape, size, etc. 



Magnetized WD/NS
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Kalita & Mukhopadhyay
MNRAS 490 (2019) 2692



Magnetized WD/NS
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Instability in high magnetic fields

20
J. Braithwaite, MNRAS 397 (2009) 763



Noncommutative geometry
Ordinary quantum mechanics: (Heisenberg algebra)
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Noncommutative geometry:



Fuzzy sphere NC
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Angular momentum algebra Fuzzy sphere algebra

Squashed fuzzy sphere algebra

Andronache & Steinacker, Journal of Physics A, 48 (2015) 295401

Madore, CGQ 9 (1992) 69



Energy dispersion relation in NC
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J2
1 + J2

2 + J2
3 =

ℏ2

4 (N2 − 1) 𝕀N×N
k =

2r2

ℏ N2 − 1

Dirac operator, D =
c
k (σ1 ⊗ [X1, . ] + σ2 ⊗ [X2, . ])

Energy eigenvalues, E2
l,m =

2ℏc2

k N2 − 1
{l(l + 1) − m(m ± 1)}



Energy dispersion relation in NC
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E2 = p2
r c2 + m2

e c4 [1 + {l(l + 1) − m(m ± 1)}
ℏ2

m2
e c2r2 ]

In the limit N ≫ 1

E2 = p2
r c2 + m2

e c4 (1 + 2ν
2ℏ

m2
e c2k ), ν ∈ ℤ0+

Landau levels in magnetic field in -directionz

E2 = p2
z c2 + m2

e c4 (1 + 2ν
B
Bc ), Bc =

m2
e c3

ℏe
= 4.414 × 1013 G



EoS in the presence of  NC
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ρ = μempne

P =
νmax

∑
ν=0

2πm4
e c5θD

h3
gν [ϵFxF(ν) − (1 + 2νθD) log ( ϵF + xF(ν)

1 + 2νθD )]



EoS in the presence of  NC
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Kalita et al. (2021)
IJMPD 30, 13 (2021) 2150101



WD mass-radius relation in NC
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Kalita et al. (2021)
IJMPD 30, 13 (2021) 2150101



Scales of  NC
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Salecker & Wigner, Physical Review, 109 (1958) 571



Scales of  NC
•  

• It has a minimum at , implying  

• From GR, we know  

• Combining them, we have 

δ → δ +
ℏL
mcδ

δ = ( ℏL
mc )

1/2

δ2 ≳
ℏL
mc

δ ≳
Gm
c2

δ3 ≳
LℏG

c3
⟹ δ ≳ (LL2

P)1/3

29
Salecker & Wigner, Physical Review, 109 (1958) 571



Scales of  NC

NC is prominent if . 

 

(General thought) NC is prominent only at the Planck scale. 

New uncertainty in length scale , where  is the Planck length. 

Hence, uncertainty in length scale is .

λ2
e ≳ 2π2ℏk

L ≲ λe/ πξ = Leff

δ ∼ (LL2
P)1/3 LP

δ ≲ (λeL2
P)1/3
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E2 = p2
r c2 + m2

e c4 (1 + 2ν
λ2

e

2π2ℏk ), k = ξ
μ2/3

e m2/3
p

hρ2/3



NC in NS
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Kalita & Mukhopadhyay (2022) 
Universe 8, 388



Conclusions
• NC behaves as an internal magnetic fields. 

• Systems’s length scale is important for the prominence of NC. 

• For WDs, . 

• Massive WDs and NSs can be explained through NC. 

• Magnetic field, rotation, modified gravity, etc. are some other physics to 

explain massive WDs and NSs. 

• GW observations in the future can single out these theories.

δ ≲ (λeL2
P)1/3
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