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Quantum Simulation
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• Use quantum computers to simulate quantum physical systems 
via evolving the Hamiltonian in time (Schrödinger equation).

• Quantum many-body systems are challenging for classical 
computers due to the exponential scaling of the Hilbert space.

• Available and useful with only ~100 (partially) error-corrected 
qubits on intermediate scale quantum devices (ISQ).

• We need better algorithms: smaller depth and lower overhead.



Applications
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• Spectrum: compute energies via 
quantum phase estimation 

• Dynamical properties: response functions, 
density of states, correlators, spin dynamics, etc

• Quantum phase diagram: crititcal points 

Monaco, Kiss, et al.,  Phys. Rev. B 107, L081105 (2023)
Grossi, Kiss, et al, Phys. Rev. E 107, 024113 (2023)



Outline:
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1.Stochastic product formula (QDRIFT). 

2. Implementation cost reduction with importance sampling. 

3.Composite channels: how to reduce the implementation cost? 

4.Numerical simulations: lattice effective field theory.

5.Response functions computations from scattering experiments. 



Stochastic product formula (QDRIFT) 
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Deterministic product formulas
𝐻 = ℎ!𝐻! + ℎ"𝐻" + ℎ#𝐻#
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Hamiltonian

First order: apply term sequentially
Second order

Problem: 
scaling with L 

Time evolution



QDRIFT (random compiler) 
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We evolve terms in the Hamiltonian randomly.

𝒑 𝒙 =
𝒉𝒙
𝝀

Results: if 𝜏 = )*
+ , qDrift matches 

Trotter at first order.
Campbell, PRL 123, 070503 (2019) Improvement from Chen, PRX Quantum 2, 040305 

𝜏 =
𝑡𝜆
𝑁

ℎ!𝐻!
ℎ"𝐻"
ℎ#𝐻#



How is this working? 
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QDRIFT

EXACT

ERROR

Do a Taylor expansion!

Sub-additivity
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Implementation cost reduction

with importance sampling



Importance sampling for QDRIFT

Idea? Sample from an alternative    
probability distribution q(j).

Why? Computational cost reduction.

How? Considering the implementation 
cost on hardware. 
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We match Trotterization at first order if:

Popular in Monte Carlo for variance reduction.

Importance sampling

Kiss et al, arXiv:2212.05952 



What can we show for the IS QDRIFT? 
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Original QDRIFT:

Price to pay:
Increase in the 

number of samples N.

Bias error 
bound

Concentration 
bound

To be 𝜀 close with probability 1 − 𝛿 :

Efficient parallelization because of concentration

Kiss et al, arXiv:2212.05952 



Computational cost reduction

O. Kiss - QTI 12

implementation cost of the generator Hj.

• Number of two-qubit native gates 
(CNOT). 

• Connectivity (length of the Pauli string). 
• Non locality.

• On error-corrected devices: 
minimize the number of T gates. 

Monte Carlo iterations  

Theorem:

Kiss et al, arXiv:2212.05952 



Summary of QDRIFT
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• Stochastic channel: good for non-uniform 
distribution of the coefficients, e.g. chemistry

PRL 123, 070503 (2019)

PRX Quantum 2, 040305 (2021) • Concentration: N can be kept small.

• Importance sampling, concentration with NM

• Higher order: qSWIFT = qDRIFT + correction terms

Kiss et al, arXiv:2212.05952 

arXiv:2302.14811 

Better error scaling
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Composite channels: 

how to reduce the implementation cost? 



Composite channels
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Hagan and Wiebe, arXiv: 2206.06409 (2022)

Given: a partition of the Hamiltonian.

H = A + B 

Idea:     simulate each terms with a 
different channel (Trotter & QDRIFT).

Advantages:

• Greater than the sum of the 
parts.

• Take advantage of the specific 
properties of each sub-system.

• Cost and error reduction.
Time evolution = Trotter + QDRIFT



How to choose the partition? 
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1. Perturbation theory: 𝐻 = 𝐴 + 𝛽𝐵, 𝛽 ≪ 1. Example: SU(4) lattice gauge theory.

2. Cost oriented: 𝐴 contains the easiest terms while 𝐵 the most expensive ones.
Example: lattice effective field theory (Hubbard like)  potential VS hoping. 

3. Connectivity oriented: 𝐻 = ∑𝐴$ where 𝐴$ can be simulated with minimal swap over head.

4. T gate efficient: 

𝑘" ∈ ℚ
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Numerical simulations: 

lattice effective field theory



Scalable model for a nuclei

05.04.
23
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Pionless EFT on a lattice with MxM sites and A 
nucleons from Nf different species.

Kinetic energy (hopping)

Two and three-body 
on-site interaction

Potential of a frozen 
nucleon

Mapping to qubits:
First quantisation 
needs log2(𝑀2)𝑁# qubits.

Second quantisation (via Jordan-
Wigner):
More natural but needs 𝑀$𝑁# qubits.

Roggero et al., Phys. Rev. D 101, 074038 (2020)



Cost of the different implementations
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Assuming a 1423 connectivity

Two regimes (A with Trotter, B with QDRIFT):

1. A describes the bulk (U = -4V),                                     
while B is the linear interpolation towards realistic 
coefficients.

2. A contains the easy terms and B the expensive ones.



Numerical Simulation (N=1)
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• Cost reduction in 
the B evolution of 
factor 10.

• QDRIFT and IS 
QDRIFT match 
Trotterization for 
all values of 𝛽.

Kiss et al, arXiv:2212.05952 



Response functions computations

from scattering experiments 
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Physical Model
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Nuclei described by H,
in its ground state.

momentum transfer 
described byO 
(external probing).

Incoming neutrino



Linear response function 
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Challenging, since it requires 
the full spectrum

Instead: Integral transform with 
Gaussian Kernel + truncation

Hamiltonian moments
Easy with quantum computers!

Groudstate with the Variational Quantum Eigensolver
arXiv:2211.00790 



Estimating expectation values
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Real

Imag.

Hadamard test 
(phase kickback)

In practice, control operations are 
expensive!



Control Reversal Gates
How to avoid the control operation? 
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R anti commutes with H: {H,R} = 0
Use R to toggle the flow of time 

Hadamard test with control reversal gates
Caveats: 

• we may need to split the 
Hamiltonian, and/or insert the 
CRG between each Trotter 
steps! 

• We were able to avoid this 
here!

• Require even order product 
formula.



Error mitigation: Virtual Distillation
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Uses multiple copies to suppress 
the non-dominating components.

Huggins, et al., Phys. Rev. X 11, 041036 (2021)

• requires connectivity 
between every copy. 

• The diagonalising gate 
can be challenging to 
implement in general.

we only need to connect the ancilla.



Error mitigation: Self-verification
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O’Brien, PRX Quantum 2, 020317 (2021)

Assuming depolarising noise

We could correct if we knew p!

Idea: compute p using a known circuit.

We prepare, then un-prepare the targeted state 
(two Trotter steps).

And use this value for the correction



How to make the noise more depolarising? 

Use Pauli Twirling!
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Turn a noisy operator into a Pauli 
channel, via gate conjugation.

In practice:  sample!

Fuchs, et al.,  Eur. Phys. J. Plus 135, 353 (2020)



Results on superconducting 
quantum hardware
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• VD does not improve the 
results (noise too important)

• Pauli twirling alone is not 
helpful.

• Self Verification works well in 
conjunction with Pauli 
Twirling.

Number of CNOTs



Conclusions
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• QDRIFT generates random product formulas whose size does not depend 
on the number of terms and concentrates fast (small variance).

• Importance sampling can be used to reduce the actual implementation 
cost on hardware (guaranteed cost reduction with the same accuracy). 

• Composite channels use different techniques to simulate different parts of 
the Hamiltonian (use the best one in each case!) 

• Response functions can be estimated from expectation values! 

• Self-verification and twirling are working well together. 



Thank you for your attention!

oriel.kiss@cern.ch

Alessandro RoggeroMichele Grossi

Important sampled QDRIFT
arXiv:2212.05952 
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