Stochastic quantum simulations for scattering experiments

Oriel Kiss, Michele Grossi and Alessandro Roggero

QTI Lecture, 5th April 2023

oriel.kiss@cern.ch

Quantum Simulation

- Use quantum computers to simulate quantum physical systems via evolving the Hamiltonian in time (Schrödinger equation).
- Quantum many-body systems are challenging for classical computers due to the exponential scaling of the Hilbert space.
- Available and useful with only ~100 (partially) error-corrected qubits on intermediate scale quantum devices (ISQ).
- We need better algorithms: smaller depth and lower overhead.

Applications

- Spectrum: compute energies via quantum phase estimation
- Dynamical properties: response functions, density of states, correlators, spin dynamics, etc
- Quantum phase diagram: crititcal points

Monaco, Kiss, et al., Phys. Rev. B 107, L081105 (2023) Grossi, Kiss, et al, Phys. Rev. E 107, 024113 (2023)

- 1. Stochastic product formula (QDRIFT).
- 2. Implementation cost reduction with importance sampling.
- 3. Composite channels: how to reduce the implementation cost?
- 4. Numerical simulations: lattice effective field theory.
- 5. Response functions computations from scattering experiments.

Stochastic product formula (QDRIFT)

O. Kiss - QTI

5

Deterministic product formulas

Hamiltonian $H = h_1 H_1 + h_2 H_2 + h_3 H_3$

Time evolution e

First order: apply term sequentially

$$\mathcal{U}_1(t) = \prod_{\gamma}^{
ightarrow} e^{-itH_{\gamma}} = \mathcal{U}(t) + \mathcal{O}(t^2),$$

QUANTUM

ITIATIVE

UNIVERSITÉ

DE GENÈVE

FACULTÉ DES SCIENCES

Problem:

scaling with L

QDRIFT (random compiler)

We evolve terms in the Hamiltonian randomly.

Campbell, PRL 123, 070503 (2019)

Improvement from Chen, PRX Quantum 2, 040305

How is this working? Do a Taylor expansion!

QDRIFT
$$\mathcal{E}(t,N)[\rho] = \sum_{j=1}^{L} p_j e^{-i\tau H_j} \rho e^{i\tau H_j} = \sum_{j=1}^{N} p_j (\mathbb{1} + i\tau [H_j,\rho]) + \mathcal{O}(\tau^2) = \mathbb{1} + \frac{it}{N} [H,\rho] + \mathcal{O}\left(\left(\frac{t\lambda}{N}\right)^2\right)$$
EXACT
$$\mathcal{U}(t/N)[\rho] = e^{-iHt/N} \rho e^{iHt/N} = \mathbb{1} + \frac{it}{N} [H,\rho] + \mathcal{O}\left(\left(\frac{t\lambda}{N}\right)^2\right)$$

$$\left\| \mathcal{U}(t) - \mathcal{E}^{N}(t, N) \right\|_{\diamond} = \left\| \mathcal{U}^{N}(t/N) - \mathcal{E}^{N}(t, N) \right\|_{\diamond} \le N \left\| \mathcal{U}(t/N) - \mathcal{E}(t, N) \right\|_{\diamond} \le \mathcal{O}\left(\left(\frac{t\lambda}{N} \right)^{2} \right)$$

Sub-additivity

$$V_{j}(t) = \prod_{k=1}^{N} e^{-i\tau_{j_{k}}H_{j_{k}}}.$$
 (6)

8

The qDrift channel is then built as the arithmetic average of the ${\cal M}$ experiments

$$\mathcal{E}(t;N,M)[\rho] = \frac{1}{M} \sum_{m}^{M} \left[V_{\boldsymbol{j}_{m}} \rho V_{\boldsymbol{j}_{m}}^{\dagger} \right], \qquad (7)$$

Implementation cost reduction

with importance sampling

Importance sampling for QDRIFT

Idea? Sample from an alternative probability distribution *q(j)*.

Why? Computational cost reduction.

How? Considering the implementation cost on hardware.

Importance sampling

$$\mathbb{E}_p[f(x)] = \sum_x q(x) \frac{p(x)}{q(x)} f(x) \equiv \mathbb{E}_q[\omega(x)f(x)],$$

Popular in Monte Carlo for variance reduction.

$$\begin{aligned} \mathcal{E}_{q}(t)[\rho] &= \sum_{j} q(j) e^{-i\tau_{j}H_{j}} \rho e^{i\tau_{j}H_{j}} \\ &\equiv \sum_{j} q(j) e^{\tau_{j}\mathcal{L}_{j}}(\rho) \\ &= \left(1 + \sum_{j} q(j)\tau_{j}\mathcal{L}_{j} + \sum_{n=2}^{\infty} \sum_{j} q(j)\tau_{j}^{n}\mathcal{L}_{j}^{n}\right)(\rho) . \end{aligned}$$

$$(14)$$

We match Trotterization at first order if:

What can we show for the IS QDRIFT?

Kiss et al, arXiv:2212.05952

QUANTUM

TECHNOLOGY

UNIVERSITÉ

DE GENÈVE

Bias error bound

$$\left\|\mathcal{U}(t)\right) - \mathcal{E}_{q}(t; N, 1)\right\|_{\diamond} \leq \frac{t^{2}\lambda^{2}}{N} \left(1 + \mathbb{E}_{p}\left[\omega(j)\right]\right).$$

Original QDRIFT:

$$\mathbb{E}_p[\omega(j)] \ge \mathbb{E}_p[\frac{p(j)}{p(j)}]$$

 $= \mathbb{E}_p[1] = 1$

Concentration bound

$$\left| \Pr\left[\left\| \mathcal{E}_{q}(t; N, M) - \mathbb{E}_{q}\left[\prod_{k=N}^{1} e^{-i\tau_{j}H_{j}} \right] \right\| \geq \epsilon/2 \right] \right.$$
$$\leq 2^{n+1} \exp\left\{ -\frac{NM\epsilon^{2}}{11t^{2}\lambda^{2}(1 + \max_{k}\omega(k))^{2}} \right\}.$$

Price to pay: Increase in the number of samples *N*.

Efficient parallelization because of concentration

To be ε close with probability $(1 - \delta)$: $NM = 11 \frac{t^2 \lambda^2}{\epsilon^2} \left(1 + \max_k \omega(k)\right)^2 (n+1) \log\left(\frac{2}{\delta}\right)$

Computational cost reduction

$$\lambda_c = \sum_l rac{h_l}{C_l},$$
 $q_c(j) = rac{h_j}{C_j \lambda_c}.$

implementation cost of the generator H_j.

Theorem:

$$N_{q_c}\mathbb{E}_{q_c}[C] \le N_p\mathbb{E}_p[C].$$

- Number of two-qubit native gates (CNOT).
- Connectivity (length of the Pauli string).
- Non locality.
- On error-corrected devices: minimize the number of **T gates**.

Monte Carlo iterations

$$q(j) \approx p(j)$$
, while regularising $th_j/(Nq(j)) \approx k\pi$.

Summary of QDRIFT

- Stochastic channel: good for non-uniform distribution of the coefficients, e.g. chemistry
- Concentration: N can be kept small.
- Importance sampling, concentration with NM

PRL **123**, 070503 (2019)

PRX Quantum 2, 040305 (2021)

Kiss et al, arXiv:2212.05952

• Higher order: qSWIFT = qDRIFT + correction terms

arXiv:2302.14811

Better error scaling

$$d_{\diamond}\left(\mathcal{U},\mathcal{E}^{(K)}\right) \in \mathcal{O}\left(\left(\frac{(\lambda t)^2}{N}\right)^K\right).$$

 OUANTUM TECHNOLOGY INITIATIVE
 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Composite channels:

how to reduce the implementation cost?

Composite channels

Given: a **partition** of the Hamiltonian.

 $\mathbf{H} = \mathbf{A} + \mathbf{B}$

Idea: simulate each terms with a different channel (Trotter & QDRIFT).

Time evolution = Trotter + QDRIFT

Advantages:

- Greater than the sum of the parts.
- Take advantage of the specific properties of each sub-system.
- Cost and error reduction.

$$\left\| \mathcal{I}_H(t) - \widetilde{\mathcal{U}}_H(t/r)^r \right\|_{\diamond} \leq \frac{t^2}{r} \left(\sum_{i < j} a_i a_j \| [A_i, A_j] \|_{\infty} + \sum_{ij} a_i b_j \| [A_i, B_j] \|_{\infty} + \frac{\lambda_B^2 (1 + \mathbb{E}_p[\omega(j)])}{N_B} \right)$$

Hagan and Wiebe, arXiv: 2206.06409 (2022)

How to choose the partition?

- **1.** Perturbation theory: $H = A + \beta B$, $\beta \ll 1$. Example: SU(4) lattice gauge theory.
- **2. Cost oriented:** *A* contains the easiest terms while *B* the most expensive ones. Example: lattice effective field theory (Hubbard like) potential VS hoping.

3. Connectivity oriented: $H = \sum A_i$ where A_i can be simulated with minimal swap over head.

4. T gate efficient:

$$|th_j - k_j \pi| < \epsilon$$

 $k_j \in \mathbb{Q}$
 $tH = \sum_j th_j H_j = \sum_j (k_j \pi) H_j + \sum_j (th_j - k_j \pi) H_j$
 $= A + B.$

Numerical simulations:

lattice effective field theory

Scalable model for a nuclei

Pionless EFT on a lattice with MxM sites and A nucleons from N_f different species.

$$\begin{split} H &= -t \sum_{f=1}^{N_f} \sum_{\langle i,j \rangle} c_{i,f}^{\dagger} c_{j,f} + 2dtA & \text{Kinetic energy (hopping)} \\ &+ U \sum_{i=1}^{N_f} \sum_{f < f'}^{N_f} n_{i,f} n_{i,f'} + V \sum_{f < f' < f''}^{N_f} \sum_{i=1}^{\text{Two and three-body}} \\ &+ U \sum_{f=1}^{N_f} n_{1,f} + V \sum_{f < f'}^{N_f} n_{1,f} n_{1,f'} & \text{Potential of a frozen nucleon} \end{split}$$

Mapping to qubits: First quantisation needs $log_2(M^2)N_f$ qubits.

Second quantisation (via Jordan-Wigner): More natural but needs M^2N_f qubits.

Roggero et al., Phys. Rev. D 101, 074038 (2020)

O. Kiss - QTI CERN

Cost of the different implementations

Assuming a 1423 connectivity

generator	$\cos t$	generator	$\cos t$
X_k	0.1	Z_1Z_2	6
Z_k	0.1	Z_3Z_4	6
Z_1Z_4	2	$Z_1Z_2Z_3Z_4$	6
Z_2Z_4	2	$Z_1Z_3Z_4$	8
Z_2Z_3	2	$Z_1Z_2Z_3$	8
$Z_1Z_2Z_4$	4	Z_1Z_3	10
$Z_2Z_3Z_4$	4		

Table 1: Implementation cost for the different generators appearing in the two considered Hamiltonians.

Two regimes (A with Trotter, B with QDRIFT):

- A describes the bulk (U = -4V), while B is the linear interpolation towards realistic coefficients.
- 2. A contains the easy terms and B the expensive ones.

$$A^{(1)} = \sum_{k=1}^{4} X_k + Z_1 + Z_1 Z_4$$

$$+ Z_2 Z_3 + Z_2 Z_4 + Z_1 Z_2 Z_4$$
(63)

$$B^{(1)} = \sum_{k=2}^{4} Z_k + Z_1 Z_2 + Z_1 Z_3 + Z_3 Z_4 + Z_1 Z_2 Z_3 + Z_2 Z_3 Z_4 + Z_1 Z_3 Z_4 + Z_1 Z_2 Z_3 Z_4.$$
(64)

 OUANTUM TECHNOLOGY INITIATIVE
 UNIVERSITÉ DE GENÈVE

 Faculté des sciences

O. Kiss - QTI CERN

Numerical Simulation (N=1)

QUANTUM

INITIATIVE

TECHNOLOGY

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

- Cost reduction in the B evolution of factor 10.
- QDRIFT and IS
 QDRIFT match
 Trotterization for all values of β.

Response functions computations

from scattering experiments

Physical Model

Linear response function

$$S(\omega, \vec{q}) = \langle \Psi_0 | \hat{O}(\vec{q})^{\dagger} \delta(\omega - (E_0 - E_f)) \hat{O}(\vec{q}) | \Psi_0 \rangle$$

$$= \sum_f \left| \langle \Psi_0 | \hat{O}(\vec{q}) | f \rangle \right|^2 \delta(\omega - (E_0 - E_f)),$$

Instead: Integral transform with Gaussian Kernel + truncation

QUANTUM

TECHNOLOGY

$$\Phi_N^{\chi}(\nu) = \frac{1}{\chi \|H\|} \sum_{n=-N}^N g_n^{\chi}(\nu) \frac{\langle \Psi_0 | \hat{O}(\vec{q})^{\dagger} e^{-in\delta tH} \hat{O}(\vec{q}) | \Psi_0 \rangle}{\sqrt{1-\chi}},$$

Groudstate with the Variational Quantum Eigensolver

UNIVERSITÉ

DE GENÈVE

Challenging, since it requires the full spectrum

Hamiltonian moments Easy with quantum computers!

arXiv:2211.00790

Estimating expectation values

 $g(t) = \langle \Psi_0 | \hat{O}(\vec{q})^{\dagger} e^{-itH} \hat{O}(\vec{q}) | \Psi_0 \rangle,$

Hadamard test (phase kickback)

In practice, control operations are expensive!

 $(\Omega \alpha)$

Control Reversal Gates How to avoid the control operation?

R anti commutes with H: {H,R} = 0 Use R to toggle the flow of time

$$\begin{split} R \exp\{-iHt\} R^{\dagger} &= R \sum_{n} \frac{(-itH)^{n}}{n!} R^{\dagger} = \\ \sum_{n} \frac{(itH)^{n}}{n!} R R^{\dagger} &= \exp\{itH\}, \end{split}$$

Caveats:

- we may need to split the Hamiltonian, and/or insert the CRG between each Trotter steps!
- We were able to avoid this here!
- Require **even order** product formula.

Hadamard test with control reversal gates

Error mitigation: Virtual Distillation

UNIVERSITÉ

DE GENÈVE

Uses multiple copies to suppress the non-dominating components.

• The diagonalising gate can be challenging to implement in general.

$\rho^M = \left(\sum_i p_i |i\rangle \langle i|\right)^M = \sum_i p_i^M |i\rangle \langle i|,$

 $\langle O \rangle_{\rm VD} \equiv \frac{\operatorname{Tr}(O\rho^{M})}{\operatorname{Tr}(\rho^{M})}.$

we only need to connect the ancilla.

Huggins, et al., Phys. Rev. X 11, 041036 (2021)

O. Kiss - QTI

26

Error mitigation: Self-verification

Assuming depolarising noise

$$\rho_1 = (1-p)|\Psi_1\rangle\langle\Psi_1| + \frac{p}{2^n}\mathbb{1}.$$
(38)

The expectation value of a Pauli operator P can then be computed as

$$\operatorname{Tr}(P\rho_1) = (1-p) \langle \Psi_1 | P | \Psi_1 \rangle , \qquad (39)$$

We could correct if we knew p!

O'Brien, PRX Quantum 2, 020317 (2021)

Idea: compute p using a known circuit.

We **prepare**, then **un-prepare** the targeted state (two Trotter steps).

$$|\Psi_2\rangle = A^{\dagger}AB |0\rangle$$

 $\operatorname{Tr}(Q\rho_2) = (1-p)\langle \Psi_2|Q|\Psi_2\rangle + p\frac{\operatorname{Tr}(Q)}{2^n},$

And use this value for the correction $\langle \Psi | \mathcal{U}(2t) | \Psi \rangle_{SV} = \frac{\langle 0 | B^{\dagger} \mathcal{U}(2t) B | 0 \rangle}{\langle 0 | B^{\dagger} \mathcal{U}(t) \mathcal{U}(-t) B | 0 \rangle},$

How to make the noise more depolarising?

Use Pauli Twirling!

Turn a noisy operator into a Pauli channel, via gate conjugation.

$$\mathcal{T}_W(\overline{M}) = \frac{1}{|W|} \sum_{w \in W} \overline{wMw^{\dagger}}.$$

In practice: sample!

(a) Pauli-twirling and noise amplification.

(b) Valid combinations for Pauli-twirling of the CX gate.

Fuchs, et al., Eur. Phys. J. Plus 135, 353 (2020)

JNIVERSITÉ

ACULTÉ DES SCIENCE

Results on superconducting quantum hardware

	linear connectivity	full connectivity
one Trotter step	38	27
two Trotter steps	68	49

Number of CNOTs

- VD does not improve the results (noise too important)
- Pauli twirling alone is not helpful.
- Self Verification works well in conjunction with Pauli Twirling.

QUANTUM

TECHNOLOGY

VITIATIVE

UNIVERSITÉ

DE GENÈVE

FACULTÉ DES SCIENCES

Conclusions

- **QDRIFT** generates random product formulas whose size **does not depend** on the number of terms and concentrates fast (small variance).
- Importance sampling can be used to reduce the actual implementation cost on hardware (guaranteed cost reduction with the same accuracy).
- **Composite channels** use different techniques to simulate different parts of the Hamiltonian (use the best one in each case!)
- **Response functions** can be estimated from expectation values!
- Self-verification and twirling are working well together.

Thank you for your attention!

Michele Grossi

Alessandro Roggero

Important sampled QDRIFT arXiv:2212.05952

TECHNOLOGY

oriel.kiss@cern.ch