Sub-PeV to PeV photon observations using the new air shower array in Bolivia and connection to BSM physics

Takashi SAKO for the ALPACA Collaboration ICRR, University of Tokyo

SM2023@Hurghada (Egypt)

Highest energy photon in the laboratory

LHCf Collaboration, PLB 780 (2018) 233-239

LHCf Arm#1

Photon production cross section at 0 degree of \sqrt{s} =13TeV *p*+*p* collisions

Outline

Introduction to the Astrophysics in sub-PeV to PeV

- Origin of galactic cosmic rays
- sub-PeV photon observations with air shower arrays
- **ALPACA**: first sub-PeV astrophysics in the southern hemisphere
- BSM physics with sub-PeV to PeV photons
 - LIV/ALP/DM/PBH…
- Summary

Why sub-PeV gamma rays?

Gaisser et al. Front. Phys. (Beijing) 8 (2013) 748

- Galactic protons are thought to be accelerated up to PeV (~knee)
 - Where are their origins?
 - Are CRs up to 100PeV (~2nd knee) heavy nuclei?
- Sub-PeV gamma rays point to the sources of PeV CRs $p(E) + ISM \rightarrow X + \pi^0 \rightarrow X + 2\gamma(\sim 0.1E)$
- Diffuse gamma rays tell us the CR distribution in the galaxy.
- Highest energy gamma rays tell us the acceleration limit in energy/nucleon.

Especially in the

southern hemisphere,

near the Galactic center!!

- Where are the CR sources?
- What is the maximum acceleration energy (/nucleon)?
- How do they propagate in the galaxy?

Gamma-ray sky

https://fermi.gsfc.nasa.gov/ssc/

70 65 -40 340 135 275 270 Galactic Longitude (deg) HESS: A&A 612, A1 (2018)

http://tevcat.uchicago.edu

Air shower measurements and PID

- · Air shower observation is essential to detect low flux sources
- BG is enormous hadronic CR showers
- Number of penetrating muons 2m underground is used for hadronic/EM shower separation
- Technic is established by the Tibet $\mathsf{AS}\gamma$ Collaboration

Ground surface

PID in the Tibet experiment

Tibet AS γ Collaboration, PRL 123, 051101 (2019)

First >100TeV detection from Crab in 2019

Gamma-ray sky

Gamma-ray sky

ALPACA

(<u>Andes Large area PA</u>rticle detector for <u>Cosmic ray physics and A</u>stronomy) Mt. Chacaltaya, Bolivia

UMSA CR Observatory 5200 m a.s.l.

La Paz

ALPACA site 4740 m a.s.l.

4,740 m above sea level (16°23´ S, 68°08´ W)

The ALPACA Collaboration

M. Anzorena¹, D. Blanco², E. de la Fuente^{1,4}, K. Goto⁵, Y. Hayash⁶, K. Hibino⁷, N. Hotta⁶, A. Jimenez-Mezz⁹, Y. Kauyose¹⁰, C. Kato⁵, S. Kavid, I. Kawata¹, T. Kai¹¹, H. Kojima¹², T. Makishim¹⁰, Y. Masuda⁶, S. Matsuhash¹¹, M. Matsumoto⁶, R. Mayu^{13,14}, P. Miranda², A. Mizuno¹, K. Munakata⁶, Y. Nakamura¹, C. Nina², M. Nishizawa¹⁵, R. Noguchi¹⁰, S. Ogio¹, M. Ohninhi¹, S. Okukawa¹⁰, A. Oshima^{1,11}, M. Raljevich², T. Saito⁵, T. Sako¹, T. K. Sako¹, J. Salima², T. Saiko¹, T. Shibasal⁴⁷, S. Shibata¹², A. Shimin¹⁷, M. A. Subieta Vayacue², T. Najima¹⁸, W. Takano¹, M. Takata¹⁰, Y. Tameda¹⁰, K. Tanaka²⁰, R. Tokana², T. Sako¹, T. Sako¹, T. Sako¹¹, Y. Tameda¹⁰, K. Tanaka²⁰, R. Tokana², T. Sako¹¹, Y. Tameda¹⁰, K. Tanaka²⁰, R. Tokana², T. Sako¹¹, X. Tameda¹⁰, K. Tanaka²⁰, K. Yokoe¹

¹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan.

- ²Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz 8635, Bolivia.
- ³Departamento de Física, CUCEI, Universidad de Guadalajara, Guadalajara, México.
- ⁴Doctorado en Tecnologías de la Información, CUCEA, Universidad de Guadalajara, Zapopan, México.
- ⁵College of Engineering, Chubu University, Kasugai 487-8501, Japan.
- ⁶Department of Physics, Shinshu University, Matsumoto 390-8621, Japan.
- ⁷Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan.
- ⁸Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan.
- ⁹Departamento de Tecnologías de la Información, CUCEA, Universidad de Guadalajara, Zapopan, México.
- ¹⁰Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
- ¹¹College of Science and Engineering, Chubu University, Kasugai 487-8501, Japan.
- 12 Chubu Innovative Astronomical Observatory, Chubu University, Kasugai 487-8501, Japan.
- ¹³Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan.
- ¹⁴Nambu Yoichiro Institute for Theoretical and Experimental Physics, Osaka Metropolitan University, Osaka 558-8585, Japan.
- ¹⁵National Institute of Informatics, Tokyo 101-8430, Japan.
- ¹⁶Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan.
- 17 College of Industrial Technology, Nihon University, Narashino 275-8575, Japan.
- 18 RIKEN, Wako 351-0198, Japan.
- 19 Faculty of Engineering, Osaka Electro-Communication University, Neyagawa 572-8530, Japan.
- ²⁰Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan.
- ²¹Doctorado en Ciencias Físicas, CUCEI, Universidad de Guadalajara, Guadalajara, México.
- ²²Maestría en Ciencia de Datos, Departamento de Métodos Cuantitativos, CUCEA, Universidad de Guadalajara, Zapopan, México.
- 23 Japan Atomic Energy Agency, Tokai-mura 319-1195, Japan.

ALPACA Array

- ✓ Cosmic-ray BG rejection power >99.9% @100TeV.
- ✓ Angular resolution ~0.2° @100TeV, Energy resolution ~20%@100TeV
- ✓ 100% duty cycle, FOV θ_{zen} <40° (well studied), θ_{zen} <60° (in study)

58 m² Muon Detector x (16+48) (3 700 m²)

ALPACA Project

ALPAQUITA Air Shower Array

 $\frac{1}{4}$ ALPACA-scale air shower array $1m^2$ scintillation detector x 97 with 15m spacing Effective area ~18,000m²

Air Shower Trigger Condition :

Any 4 detectors with >0.6 particles within 600ns
→ Air shower trigger rate ~280Hz
Cosmic-ray mode energy ~7 TeV

1m² 5mm lead plate 1m² Scintillator (50cm x 50cm x 5cm x4)

Inverse pyramid shape Stainless steel box (White painted inside)

2-inch PMT x1

Construction status: 2022 Jun. Deploy detectors 2022 Sep. Partial operation 2023 Apr. Full operation

ALPAQUITA Air Shower Analysis

ALPAQUITA sensitivity

S.Kato et al., Experimental Astronomy (2021) 52:85-107

Site photo + CG image of MD by design company

- Construction of underground muon detector starts in 2024 => completion of ALPAQUITA
- Completion of full ALPACA in 2025
- A few bright TeV sources are within the ALPAQUITA 1yr sensitivity
- Half of the known southern TeV sources are within ALPACA 1yr sensitivity

Many sub-PeV sources will be discovered in the coming years.

BSM physics with sub-PeV to PeV photons

Astro photons have generally power law energy spectrum

High-energy cutoff is expected due to the acceleration limit

Photon-photon interaction leads more suppression at high energy (distance dependent)

Test of QED at PeV

- Some BSM scenarios predict a sharp cut off
- Some BSM scenarios predict less attenuation

=> Detection or non-detection of high-energy photon can constrain the BSM scenarios

Lorentz Invariance Violation (LIV)

$$E_{\gamma}^2 - p_{\gamma}^2 = \pm |\alpha_n| p_{\gamma}^{n+2},$$

$$E_{\rm LIV}^{(n)} = \alpha_n^{-1/n}.$$

- Photon decay is predicted
- Photon decay predicts a mean free path and a sharp cutoff above threshold

$$\begin{split} \Gamma_{\gamma \to 3\gamma} &= 5 \times 10^{-14} \frac{E_{\gamma}^{19}}{m_e^8 E_{\rm LIV}^{(2)10}}, \\ E_{\rm LIV}^{(2)} &> 3.33 \times 10^{19} \ {\rm eV} \bigg(\frac{L}{\rm kpc}\bigg)^{0.1} \bigg(\frac{E_{\gamma}}{\rm TeV}\bigg)^{1.9} \end{split}$$

• E_{LIV} can be constrained by the actually observed photon energy E_{γ} and the distance to the source L

1021

1022

 $E_{UV}^{(2)}[eV]$

1023

1025

HAWC Collaboration, PRL 124, 131101 (2020)

Diffuse photons and BSM

Diffuse photons and Axion-Like Particle (ALP)

C. Eckner and F. Calore, PRD 106, 083020 (2022)

Diffuse photons and ALP

C. Eckner and F. Calore, PRD 106, 083020 (2022) flux (model) HAWC: Galactic diff $[{\rm GeV^{1.7}\,cm^{-2}\,s^{-1}\,sr^{-1}}]$ ALP flux (model) normalized by IceCube ν flux $5^{2.7} \frac{d\Phi}{dE}$ 10^{-1} = 100 neV $m_{\nu} = 100 \text{ neV}$ 2.1 × 10⁻¹¹ GeV⁻¹ $\sim 2.1 \times 10^{-11} \text{ GeV}^{-11}$ 102 10^{2} E [TeV] E [TeV] Interstellar Emission (IE: diffuse emission) and ٠

 $\mathrm{g}^{2.7 \frac{\mathrm{d}\Phi}{\mathrm{d}E}} \left[\mathrm{GeV}^{1.7} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1} \right]$

 10^{-2}

 10^{-1}

 $g_{a\gamma\gamma}|$ [GeV⁻¹]

- Interstellar Emission (IE; diffuse emission) and contribution from sub threshold sources (sTH) are modeled
- ALP contribution is modeled assuming starforming galaxy sources, its evolution, normalization by IceCube ν flux with m_a and $g_{a\gamma\gamma}$ free parameters
- Limit in $g_{a\gamma\gamma}$ as a function of m_a

Summary

Astrophysics reach sub-PeV to PeV photons since 2019

- Tibet, HAWC and LHAASO
- individual source and diffuse emission
- all observatories in the northern hemisphere
- First southern observatory ALPACA
 - many sub-PeV to PeV sources will be revealed
 - some of them will be PeV CR accelerators
- sub-PeV to PeV photons test new physics BSM
 - LIV/ALP/DM(annihilation and decay)/PBH/…
 - ALPACA can provide "PeV beams" to test BSM scenarios