Interesting directions in Flavor Physics.

Alakabha Datta

University of Mississippi

November 7, 2023

BSM-2023, Hurghada

Alakabha Datta (UMiss) Interesting directions in Flavor Physic November 7, 2023 1/37

- Focus on interesting results mostly from quark flavor physics.
- New effects in $\bar{b} \to \bar{s}$ transitions- $b \to s\ell^+\ell^-, b \to s\nu\bar{\nu}, b \to sq\bar{q}$.
- Review of the $b \to s\ell^+\ell^-$, $b \to s\nu\bar{\nu}$. New evidence of $B^+ \to K^+ + inv$ - about 3σ away from SM prediction for $B^+ \to K^+ + \bar{\nu}\nu$.
- Review of the $b
 ightarrow sqar{q}$. The $B
 ightarrow K\pi$ puzzle.
- New physics may be heavy or light- Effective FieldTheory.
- Model with light NP that addresses $b \rightarrow s \nu \bar{\nu}$, the MiniBooNE anomaly, also muon g 2.

- Focus on interesting results mostly from quark flavor physics.
- New effects in $\bar{b} \to \bar{s}$ transitions- $b \to s\ell^+\ell^-, b \to s\nu\bar{\nu}, b \to sq\bar{q}$.
- Review of the $b \to s\ell^+\ell^-$, $b \to s\nu\bar{\nu}$. New evidence of $B^+ \to K^+ + inv$ - about 3σ away from SM prediction for $B^+ \to K^+ + \bar{\nu}\nu$.
- Review of the $b \rightarrow sq\bar{q}$. The $B \rightarrow K\pi$ puzzle.
- New physics may be heavy or light- Effective FieldTheory.
- Model with light NP that addresses $b \rightarrow s \nu \bar{\nu}$, the MiniBooNE anomaly, also muon g 2.

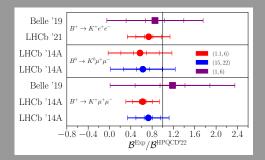

- Focus on interesting results mostly from quark flavor physics.
- New effects in $\bar{b} \to \bar{s}$ transitions- $b \to s\ell^+\ell^-, b \to s\nu\bar{\nu}, b \to sq\bar{q}$.
- Review of the $b \to s\ell^+\ell^-$, $b \to s\nu\bar{\nu}$. New evidence of $B^+ \to K^+ + inv$ - about 3σ away from SM prediction for $B^+ \to K^+ + \bar{\nu}\nu$.
- Review of the $b
 ightarrow sqar{q}$. The $B
 ightarrow K\pi$ puzzle.
- New physics may be heavy or light- Effective FieldTheory.
- Model with light NP that addresses $b \rightarrow s \nu \bar{\nu}$, the MiniBooNE anomaly, also muon g 2.

- Focus on interesting results mostly from quark flavor physics.
- New effects in $\bar{b} \to \bar{s}$ transitions- $b \to s\ell^+\ell^-, b \to s\nu\bar{\nu}, b \to sq\bar{q}$.
- Review of the $b \to s\ell^+\ell^-$, $b \to s\nu\bar{\nu}$. New evidence of $B^+ \to K^+ + inv$ - about 3σ away from SM prediction for $B^+ \to K^+ + \bar{\nu}\nu$.
- Review of the $b \rightarrow sq\bar{q}$. The $B \rightarrow K\pi$ puzzle.
- New physics may be heavy or light- Effective FieldTheory.
- Model with light NP that addresses $b \rightarrow s \nu \bar{\nu}$, the MiniBooNE anomaly, also muon g 2.

- Focus on interesting results mostly from quark flavor physics.
- New effects in $\bar{b} \to \bar{s}$ transitions- $b \to s\ell^+\ell^-, b \to s\nu\bar{\nu}, b \to sq\bar{q}$.
- Review of the $b \to s\ell^+\ell^-$, $b \to s\nu\bar{\nu}$. New evidence of $B^+ \to K^+ + inv$ - about 3σ away from SM prediction for $B^+ \to K^+ + \bar{\nu}\nu$.
- Review of the $b \rightarrow sq\bar{q}$. The $B \rightarrow K\pi$ puzzle.
- New physics may be heavy or light- Effective FieldTheory.
- Model with light NP that addresses $b \rightarrow s \nu \bar{\nu}$, the MiniBooNE anomaly, also muon g 2.

- Focus on interesting results mostly from quark flavor physics.
- New effects in $\bar{b} \to \bar{s}$ transitions- $b \to s\ell^+\ell^-, b \to s\nu\bar{\nu}, b \to sq\bar{q}$.
- Review of the $b \to s\ell^+\ell^-$, $b \to s\nu\bar{\nu}$. New evidence of $B^+ \to K^+ + inv$ - about 3σ away from SM prediction for $B^+ \to K^+ + \bar{\nu}\nu$.
- Review of the $b \rightarrow sq\bar{q}$. The $B \rightarrow K\pi$ puzzle.
- New physics may be heavy or light- Effective FieldTheory.
- Model with light NP that addresses $b \rightarrow s \nu \bar{\nu}$, the MiniBooNE anomaly, also muon g 2.

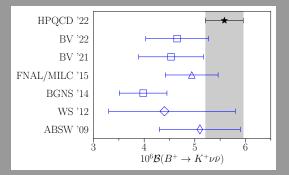
$b ightarrow s \mu^+ \mu^- ~{ m and}~ b ightarrow s u ar u$ - ${ m SM}$



$$\begin{split} H_{\rm eff}(b \to s \ell \bar{\ell}) &= -\frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[C_9 \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\ell} \gamma_\mu \ell \right) \right. \\ &+ C_{10} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\ell} \gamma_\mu \gamma^5 \ell \right) \right] , \\ H_{\rm eff}(b \to s \nu \bar{\nu}) &= -\frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^* C_L \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\nu} \gamma_\mu (1 - \gamma^5) \nu \right) , \\ H_{\rm eff}(b \to s \gamma^*) &= C_7 \frac{e}{16\pi^2} \left[\bar{s} \sigma_{\mu\nu} (m_s P_L + m_b P_R) b \right] F^{\mu\nu} \end{split}$$

 $B \to \overline{K^{(*)}\ell\ell}$ Anomaly ?

$$\begin{split} M_{\rm SM}(B \to K^{(*)}\ell\bar{\ell}) &= -\frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[C_9 \left\langle K^{(*)} | \bar{s}_L \gamma^\mu b_L | B \right\rangle \bar{\ell} \gamma_\mu \ell \right) \\ &+ C_{10} \left\langle K^{(*)} | \bar{s}_L \gamma^\mu b_L | B \right\rangle \bar{\ell} \gamma_\mu \gamma^5 \ell \right] \end{split}$$


Need Form Factors. From lattice:arXiv: 2207.13371, HPQCD

A universal ΔC_9 can explain the data.

$$\begin{split} B &\to K^{(*)} \nu \bar{\nu} \text{ Anomaly} \\ M_{\rm SM}(B \to K^{(*)} \nu \bar{\nu}) &= -\frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^* \, C_L \, \langle K^{(*)} | \bar{s}_L \gamma^\mu b_L | B \rangle \bar{\nu} \gamma_\mu (1 - \gamma^5) \nu \ , \end{split}$$

Same Form Factors. From lattice:arXiv: 2207.13371, HPQCD

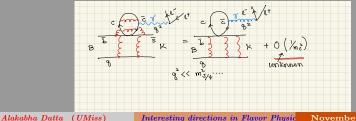
Belle II (EPS-HEP2023, arXiv:) : BR($B^+ \to K^+ + \text{inv}$) = (2.4 ± 0.7) × 10⁻⁵ ~ 2.8 σ from HPQCD22 SM prediction (5.58 ± 0.38) × 10⁻⁶.

Alakabha Datta (UMiss)

Interesting directions in Flavor Physic November 7, 2023

5/37

Hadronic Uncertainties: Charm Loop effects: arXiv: 1512.07157


 $b \rightarrow s \ell^+ \ell^-$ can also receive corrections from non-leptonic operators: tree level charged current operators

$$M = \langle K^* \ell^+ \ell^- | \, \bar{s} b \bar{q} q \, | B
angle$$

 $\bar{c}c \rightarrow \gamma^* \rightarrow \ell^+ \ell^-$. Can generate a ΔC_9 .

There can also be resonant contributions $\bar{c}c \rightarrow J/\psi \rightarrow \ell^+ \ell^-$.

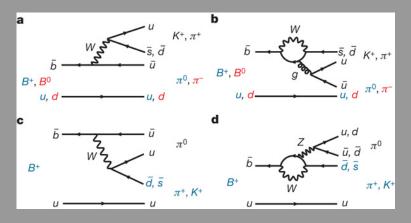
Note the charm contamination cannot come to the rescue for $B^+ \to K^+ \bar{\nu} \nu$: suppressed by $< \mathcal{O}(m_b^2/M_z^2)$.

Interesting directions in Flavor Physic November 7, 2023 6/37

$B \to \pi K$ Puzzle

Decay	$BR(\times 10^{-6})$	A _{CP}	S _{CP}
$B^+ ightarrow \pi^+ K^0$	23.79 ± 0.75	-0.017 ± 0.016	
$B^+ o \pi^0 K^+$	12.94 ± 0.52	0.025 ± 0.016	
$B^0_d ightarrow \pi^- K^+$	19.57 ± 0.53	-0.084 ± 0.004	
$B^0_d o \pi^0 K^0$	9.93 ± 0.49	-0.01 ± 0.10	0.57 ± 0.17

Table: Branching ratios, direct CP asymmetries A_{CP} , and mixing-induced CP asymmetry S_{CP} (if applicable) for the four $B \rightarrow \pi K$ decay modes.


$$\begin{array}{lll} A(B \to f) &=& A_1 e^{i\phi_1} e^{i\delta_1} + A_2 e^{i\phi_2} e^{i\delta_2} \ , \\ A(\bar{B} \to \bar{f}) &=& A_1 e^{-i\phi_1} e^{i\delta_1} + A_2 e^{-i\phi_2} e^{i\delta_2} \ . \end{array}$$

Hence **direct** CP asymmetry:

$$a_{dir}^{CP} \equiv \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})} = \frac{2A_1A_2 \sin \Phi \sin \Delta}{A_1^2 + A_2^2 + 2A_1A_2 \cos \Phi \cos \Delta} \ ,$$

where $\Phi \equiv \phi_1 - \phi_2$ and $\Delta \equiv \delta_1 - \delta_2$.

$B \rightarrow \pi K$ simplified puzzle

 $P' > T' \sim P'_{EW} > C', P^{C}_{EW}$

Alakabha Datta (UMiss) Interesting directions in Flavor Physic November 7, 2023 8 / 37

Topological Amplitudes, $b \rightarrow s$

We can describe all decays dominated by the $b \rightarrow s$ penguins by the following amplitudes: $T', C', P', P_{EW}, P_{EW}^{c}$.

$$\frac{|T'|}{|P'|} = \frac{|V_{ub}V_{us}|}{|V_{tb}V_{ts}|} \frac{C_1}{\frac{\alpha_s}{\pi}} \sim 0.15$$
$$\frac{|C'|}{|P'|} = \frac{|C_2|}{|C_1|} \times \frac{|T'|}{|P'|} \sim 0.03$$
$$\frac{|P'_{EW}|}{|P'|} = \frac{1.254\alpha}{\frac{\alpha_s}{\pi}} \sim 0.14$$
$$\frac{|P^c_{EW}|}{|P'|} = \frac{|C_7|}{|C_9|} \times \frac{|P'_{EW}|}{|P'|} \sim 0..014$$

The NP required to resolve the $B \rightarrow \pi K$ puzzle is $|A_{NP}| \sim |P'_{EW}|$.

Topological Amplitudes, $b \rightarrow d$

We can describe all decays dominated by the $b \rightarrow s$ penguins by the following amplitudes: $T, C, P, P_{EW}, P_{EW}^{c}$.

$$\frac{|P|}{|T|} = \frac{|V_{tb}V_{td}|}{|V_{ub}V_{ud}|} \frac{\frac{\alpha_s}{\pi}}{C_1} \sim 0.10$$
$$\frac{|C|}{|T|} = \frac{|C_2|}{|C_1|} \sim 0.2$$
$$\frac{|P_{EW}|}{|P|} = \frac{1.254\alpha}{\frac{\alpha_s}{\pi}} \sim 0.14$$
$$\frac{|P_{EW}^c|}{|P|} = \frac{|C_7|}{|C_9|} \times \frac{|P_{EW}|}{|P|} \sim 0..014$$

The NP in $b \rightarrow d$ transition like $B \rightarrow \pi \pi$ is small.

 $B \rightarrow \pi K$ simplified puzzle For the $A^{ij} \equiv B \rightarrow \pi^i K^j$ amplitudes:

$$\begin{array}{rcl} A^{+0} &=& -P'_{tc} \ , \\ \sqrt{2}A^{0+} &=& -T'e^{i\gamma}+P'_{tc}-P'_{EW} \ , \\ A^{-+} &=& -T'e^{i\gamma}+P'_{tc} \ , \\ \sqrt{2}A^{00} &=& -P'_{tc}-P'_{EW} \ . \end{array}$$

$$P_{\scriptscriptstyle EW}' = \frac{3}{2} \frac{c_9}{c_1} R T'$$

where $R \equiv |(V_{tb}^* V_{ts})/(V_{ub}^* V_{us})| = 49.1 \pm 1.0$

- P'_{tc} and P'_{EW} have the same weak phase..
- T' and P'_{EW} have the same strong phase.
- So CPV is only from the $T' P'_{tc}$ interference.

Tree and Electroweak

$$\begin{array}{rcl} A^{+0} &=& -P_{tc}' + P_{uc}' e^{i\gamma} - \frac{1}{3} P_{EW}^c \ , \\ \sqrt{2} A^{0+} &=& -T' e^{i\gamma} - C' e^{i\gamma} + P_{tc}' - P_{uc}' e^{i\gamma} \\ && -P_{EW}' - \frac{2}{3} P_{EW}^c \ , \\ A^{-+} &=& -T' e^{i\gamma} + P_{tc}' - P_{uc}' e^{i\gamma} - \frac{2}{3} P_{EW}^c \ , \\ \sqrt{2} A^{00} &=& -C' e^{i\gamma} - P_{tc}' + P_{uc}' e^{i\gamma} \\ && -P_{EW}' - \frac{1}{3} P_{EW}^c \ . \end{array}$$

$$P_{EW}' = \frac{3}{4} \frac{c_9 + c_{10}}{c_1 + c_2} R(T' + C') + \frac{3}{4} \frac{c_9 - c_{10}}{c_1 - c_2} R(T' - C') ,$$

$$P_{EW}^c = \frac{3}{4} \frac{c_9 + c_{10}}{c_1 + c_2} R(T' + C') - \frac{3}{4} \frac{c_9 - c_{10}}{c_1 - c_2} R(T' - C') ,$$

SM fits and "solutions"

χ^2/dof	3.18/2		
Parameter	Fitted Value		
$ P'_{tc} $	50.7 ± 1.7		
T'	5.5 ± 1.5		
<i>C</i> ′	3.8 ± 1.3		
$ P'_{uc} $	1.0 ± 9.1		
$\delta_{P'_{tc}}$	-16.0 ± 7.3		
$\delta_{C'}$	205 ± 20		
$\delta_{P'_{uc}}$	8.0 ± 350		

Table: All SM parameters, all data

- |C'/T'| = 0.68 is pretty large and generally inconsistent with observations of color suppressed decays.
- \circ The default expectation $|C'/T'|\sim 0.2$ (see e.g. QCD factorization) which will worsen the fit.
- ACP(00) = -0.11. Hence precise measurement $\pi^0 K^0$ is crucial.

Default SM fits

χ^2/dof	40.2/6		
Parameter	Fitted Value		
$ P'_{tc} $	50.19 ± 0.44		
T'	7.3 ± 1.3		
$\delta_{P'_{tc}}$	-15.4 ± 3.1		

Table: Fit 1A: $P'_{uc} = 0, C' = \overline{0}$, all data

χ^2/dof	26.7/5		
Parameter	Fitted Value		
$ P'_{tc} $	46.23 ± 0.50		
T'	5.33 ± 0.72		
$\delta_{P'_{tc}}$	-23.5 ± 3.9		
$\delta_{C'}$	220 ± 16		

Table: $P'_{uc} = 0, |C'/T'| = 0.2$, all data

14/37

Alakabha Datta (UMiss) Interesting directions in Flavor Physic November 7, 2023

Effective Operators: SMEFT

$Q_{qq}^{(1)}$	$(ar q_i \gamma_\mu q_j)(ar q_k \gamma^\mu q_\ell)$	$(\bar{L}L)(\bar{L}L)$	qq1_2333
$Q_{qq}^{(3)}$	$(ar q_i \gamma_\mu au^{ \prime} q_j) (ar q_k \gamma^\mu au^{ \prime} q_\ell)$		qq3_2333
$Q_{qd}^{(1)}$	$(ar q_i \gamma_\mu q_j) (ar d_k \gamma^\mu d_\ell)$	$(\bar{L}L)(\bar{R}R)$	qd1_2333
$Q_{qd}^{(8)}$	$\left(ar{q}_i\gamma_\mu T^A q_i ight)\left(ar{d}_k\gamma^\mu T^A d_\ell ight)$		qd8_2333
Q _{dd}	$(ar{d}_i\gamma_\mu d_j)(ar{d}_k\gamma^\mu d_\ell)$	$(\bar{R}R)(\bar{R}R)$	dd_2333

RGE effects can generate at the m_b scale $b \rightarrow s \ell^+ \ell^-$ and $b \rightarrow s q \bar{q}$ operators.

Four quark operators: Datta, Ghosh, Duraisamy : arXiv:1310.1937

At the m_b scale

$$C_{V_{LL}}^{q} \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*}(\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{q}_{L}\gamma^{\mu}q_{L}), \quad C_{V_{LR}}^{q} \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*}(\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{q}_{R}\gamma^{\mu}q_{R})$$

$$C_{V_{RL}}^{q} \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*}(\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{q}_{L}\gamma^{\mu}q_{L}), \quad C_{V_{RR}}^{q} \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*}(\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{q}_{R}\gamma^{\mu}q_{R})$$

$$C_{V_{LL}}^{q,C} \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_L^{\alpha} \gamma_\mu b_L^{\beta}) (\bar{q}_L^{\beta} \gamma^\mu q_L^{\alpha}), \quad C_{V_{LR}}^{q,C} \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_L^{\alpha} \gamma_\mu b_L^{\beta}) (\bar{q}_R^{\beta} \gamma^\mu q_R^{\alpha}), \quad C_{V_{RR}}^{q,C} \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_R^{\alpha} \gamma_\mu b_R^{\beta}) (\bar{q}_R^{\beta} \gamma^\mu q_L^{\alpha}), \quad C_{V_{RR}}^{q,C} \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_R^{\alpha} \gamma_\mu b_R^{\beta}) (\bar{q}_R^{\beta} \gamma^\mu q_R^{\alpha}),$$

$$C_9^{bs\ell\ell} rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (ar{s}_L \gamma_\mu b_L) (ar{\ell} \gamma^\mu \ell)$$

Four quarks SMEFT operators can potentially explain both the $b \rightarrow s\ell^+\ell^-$ and $b \rightarrow sq\bar{q}$ anomalies. Strong constraints come from B_s mixing. Alakabha Datta (UMiss) Interesting directions in Flavor Physic November 7, 2023 16/37

$b \to s \nu \bar{\nu}$

- $b \rightarrow s \nu \bar{\nu}$ can potentially come from SMEFT operators discussed previously.
- Interesting possibilities for contribution to the BR($B^+ \rightarrow K^+ + inv$): Dark matter, $B^+ \rightarrow K^+ \phi \phi$ or $B^+ \rightarrow K^+ \bar{\chi} \chi$ (arXiv:2309.12741) or sterile neutrinos (arXiv: 2309.02940)- uses effective theory and so less predictive.
- Another possibility is $B^+ \to K^+ + \text{inv}$ is due to $B^+ \to K^+ X$ where X is a vector or scalar that is either invisible or decays to invisible states.

Light new physics: What can X be?

- X has to be light enough to be produced on shell in B decays.
- X should be below the μ threshold so that it does not contribute to $b \to s \mu^+ \mu^-.$
- $\circ~$ Take m_X between 10 $\lesssim~m_X/{\rm MeV}\lesssim$ 150 to be above the dielectron threshold.
- X is either invisible in the length scale of the experiment or couples to invisible states.
- X is scalar is preferred over vector avoid contributions from longitudinal polarizations $\sim \frac{E}{m_{\chi}}$. Causes problem to with B and K mixing, neutrino scattering at higher energies etc.

Phenomenology

- For $B^+ \to K^+S$ to contribute to the Belle II signal $B^+ \to K^+$ inv, S has to be long lived and this is subject to beam dump constraint.
- Prefer to have S decay to invisible states (ν) and to visible states so that it is short lived.
- Introduce a massive sterile Dirac neutrino, ν_D , that couples to S. ν_D mixes with the active neutrino (ν_{μ}) with a mixing angle, U. This generates a coupling of S to light muon neutrino.
- The ν_D is short lived to avoid strong constraints on the mixing U.

General Model- Effective Interaction

S mixes with a general extended unspecified Higgs sector and couples to a sterile neutrino state.

$$\mathcal{L}_{S} \supset \frac{1}{2} (\partial_{\mu}S)^{2} - \frac{1}{2} m_{S}^{2}S^{2} - \eta_{d} \sum_{f=d,\ell} \frac{m_{f}}{v} \bar{f} fS$$
$$- \sum_{f=u,c,t} \eta_{f} \frac{m_{f}}{v} \bar{f} fS - g_{D}S \bar{\nu}_{D} \nu_{D} - \frac{1}{4} \kappa SF_{\mu\nu} F^{\mu\nu} , \qquad (1)$$

- The mixing of S in the down sector is universal but not in the up sector.
- The production of S($B \to KS, K \to \pi S$) is decoupled from its decay ($S \to e^+e^-, \gamma\gamma, \bar{\nu}\nu$).
- The production of ν_D (from mixing with light neutrino) is decoupled from its decay ($\nu_D \rightarrow \nu_\mu S \rightarrow \nu_\mu e^+ e^-, \nu_\mu \gamma \gamma, \nu_\mu \bar{\nu_\mu} \nu_\mu$).

20/37

 $B \to \overline{KS \text{ and } K \to \pi S}$

$$\mathcal{L}_{FCNC} = g_{bs}\bar{s}P_RbS + g_{sd}\bar{d}P_RsS,$$
$$g_{bs} \approx \frac{3\sqrt{2}G_F}{16\pi^2} \frac{m_t^2 m_b}{v} \eta_t V_{tb} V_{ts}^*$$

 and

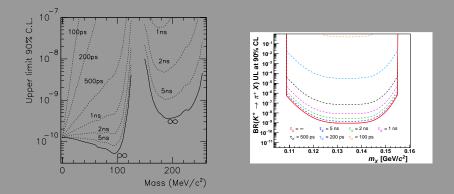
$$g_{sd} \approx \frac{3\sqrt{2}G_F}{16\pi^2} \frac{m_t^2 m_s}{v} V_{ts} V_{td}^* \left(\eta_t + \eta_c \frac{m_c^2}{m_t^2} \frac{V_{cs} V_{cd}^*}{V_{ts} V_{td}^*}\right)$$

• $\frac{V_{cs}V_{cd}^*}{V_{ts}V_{td}^*} \sim \lambda^{-4}$, λ is the Cabibbo angle..

• η_t and η_c have to be adjusted to accommodate $B \to K + \text{inv}$ and $K \to \pi + \text{inv}$.

$K_L \rightarrow \pi^0 + \text{inv Bounds}$

$$g_{sd} \approx \frac{3\sqrt{2}G_F}{16\pi^2} \frac{m_t^2 m_s}{v} V_{ts} V_{td}^* \left(\eta_t + \eta_c \frac{m_c^2}{m_t^2} \frac{V_{cs} V_{cd}^*}{V_{ts} V_{td}^*}\right)$$


• If $\eta_t \sim \eta_c$ then predicted $K_L \rightarrow \pi^0 + \text{inv}$ violates the KOTO bound (KOTO - arXiv: 2012.07571).

• $K_L \to \pi^0 S$ is CP conserving and so rate $\sim Re[V_{ts}V_{td}^*\left(\eta_t + \eta_c \frac{m_c^2 V_{cs}V_{cd}^*}{m_t^2 V_{ts}V_{td}^*}\right)]$ and cancellation is possible to satisfy KOTO bound.

• We find $\eta_t \sim 0.005$ and $|\eta_c| \sim 0.1$ for $\mathcal{B}[S \to \bar{\nu}\nu] \sim 1$.

$K \rightarrow \pi + \text{inv Bounds}$

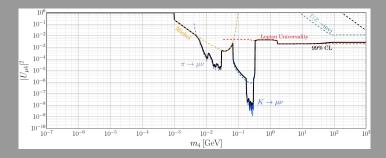
 $K^+ \rightarrow \pi^+ + \mathrm{inv}$ interpreted as $K^+ \rightarrow \pi^+ X$

Various experiments like E979 (arXiv:0903.0030), NA62(arXiv: 2010.07644) put bounds on the $\mathcal{BR}[K^+ \to \pi^+ X]$ for different lifetimes. We avoid these bounds as we have shorter lifetime.

Alakabha Datta (UMiss) Interesting directions in Flavor Physic November 7, 2023 23 / 37

The sterile neutrino The sterile neutrino ν_D and the light neutrino are taken to be Dirac fermion.

$$\nu_{\alpha(L,R)} = \sum_{i=1}^{4} U_{\alpha i}^{(L,R)} \nu_{i(L,R)} , \quad (\alpha = e, \mu, \tau, D), \qquad (2)$$

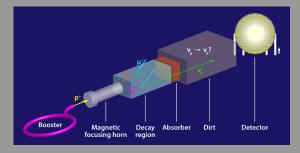

 $(U^L = U^R \equiv U)$. Here, we assume $U_{e4} \approx U_{ au 4} pprox 0$

 Several experiments including PS191, NuTeV, BEBC, FMMF, CHARM II, NA62, T2K and MicroBooNE have placed limits on U for long lived HNL.

• We avoid these bounds because both S and ν_D are short lived with lifetime less than 0.1 ps.

Bounds on $U_{\mu4}$

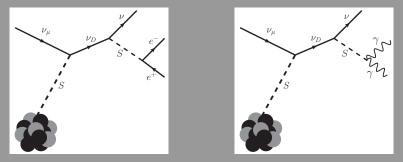
Decay independent bounds: arXiv:1511.00683


- arXiv:1802.02965(CMS) Upper limits at 95% limit for $|U_{e4}|^2$ and $|U_{\mu4}|^2$ from $W \rightarrow \ell \nu_4, \nu_4 \rightarrow \ell e^+ e^- \nu (100\%)$ between $1.2 \times 10^{-5} - 1.8$ for $m_{\nu 4}$ between 1 GeV- 1.2 TeV.
- Require $m_{
 u_4}$ around 400–500 MeV with $U_{\mu4} \sim 10^{-3}$ and so consistent with bounds.

Constraints

Observable	SM expectation	Measurement or constraint	
${\cal B}(B^+ o K^+ u ar u)$	$(5.58\pm0.38) imes10^{-6}$	$(2.40\pm 0.67) imes 10^{-5}$	
${\cal B}(B^0 o {\cal K}^{*0} u ar u)$	$(9.2 \pm 1.0) imes 10^{-6}$	$< 1.8 imes 10^{-5}$	
${\cal B}(B^+ o K^{*+} u ar u)$	${\cal B}(B^0 o K^{*0} u ar u) { au_{B^+} \over au_{ m P0}}$	$< 4 imes 10^{-5}$	
$\mathcal{B}(B^0 ightarrow \mathcal{K}^{*0} e^+ e^-)_{0.03-1~{ m GeV}}$	$(2.43^{+0.66}_{-0.47}) imes 10^{-7}$ $(3.1^{+0.9+0.2}_{-0.8-0.3} \pm 0.2) imes$		
$\mathcal{B}(B_s o \gamma \gamma)$	$5 imes 10^{-7}$	$< 3.1 imes 10^{-6}$	
${\cal B}(B_{s} o \mu^{+} \mu^{-})$	$(3.57\pm 0.17) imes 10^{-9}$	$(3.52^{+0.32}_{-0.31}) imes10^{-9}$	
${\cal B}({\cal K}_L o \pi^0 u ar u)$	$(3.4\pm 0.6) imes 10^{-11}$	$< 4.9 imes 10^{-9}$	
${\cal B}({\cal K}_L o \pi^0 e^+ e^-)$	$(3.2^{+1.2}_{-0.8}) imes 10^{-11}$	< 2.8 $ imes$ 10 ⁻¹⁰	
${\cal B}({\cal K}_L o \pi^0 \gamma \gamma)$	-	$(1.273\pm0.033) imes10^{-6}$	
${\cal B}({\cal K}_{\cal S} o \pi^0 \gamma \gamma)$	-	$(4.9\pm1.8) imes10^{-8}$	
${\cal B}({\cal K}^+ o\pi^+\gamma\gamma)$	- $(1.01 \pm 0.06) imes 1$		
$\mathcal{B}(\mathcal{K}^{\pm} ightarrow \mu^{\pm} u_{\mu} e^{+} e^{-})_{m_{e^{+}e^{-}} \ge 140 \text{ MeV}}$	-	$(7.81\pm0.23) imes10^{-8}$	
ΔM_{B_s}	$(18.4^{+0.7}_{-1.2}) { m \ ps^{-1}}$	$(17.765\pm0.006)~{ m ps}^{-1}$	
$\Delta M_{\mathcal{K}}$	$(47\pm18) imes10^{8}~{ m s}^{-1}$	$(52.93 \pm 0.09) imes 10^8 \ { m s}^{-1}$	
a _µ	$116591810(43) imes 10^{-11}$	$116592059(22) imes 10^{-11}$	

Implication for the MiniBooNE Anomaly


- Model predicts new effect in neutrino scattering $\nu_{\mu} + Z \rightarrow \nu_4 + Z$ and ν_4 decay, $\nu_4 \rightarrow \nu_{\mu}S \rightarrow \nu_{\mu} + (e^+, e^-, \gamma\gamma, \bar{\nu_{\mu}}\nu_{\mu})$.
- Consider as explanation for the MiniBooNE Electron like events. arXiv: 2308.02543(for review).

MiniBooNE Electron like events

- There is an apparent $\nu_{\mu} \rightarrow \nu_{e}$ conversion of neutrinos and antineutrinos at short baselines in the MiniBooNE experiment and the Liquid Scintillator Neutrino Detector (LSND).
- The MiniBooNE, excess is characterized by electron-like events in the energy region between 200 MeV and 600 MeV and is coincident in time with the $\langle E_{\nu} \rangle \sim 0.8$ GeV neutrino beam. Considered a 4.8 σ significance.
- Many solutions, oscillatory(3+1 oscillations) and non-oscillatory- like additional new physics sources of e^+e^- or $\gamma\gamma$ pairs and we focus on the later
- MicroBooNE rules out some of the solutions but many solutions still unconstrained.

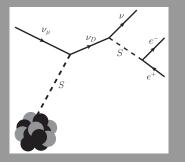
MiniBooNE - 5 model: arXiv: 2310:15136

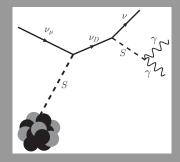
$$\mathcal{L}_{SN} = C_N \bar{\psi}_N \psi_N S ,$$
$$C_N = ZC_p + (A - Z)C_n .$$

The proton and neutron couplings are related to the quark-scalar couplings by

$$C_{p} = \frac{m_{p}}{v} \left(\eta_{c} f_{c}^{p} + \eta_{t} f_{t}^{p} + \sum_{d} \eta_{d} f_{d}^{p} \right), \quad C_{n} = \frac{m_{n}}{v} \left(\eta_{c} f_{c}^{n} + \eta_{t} f_{t}^{n} + \sum_{d} \eta_{d} f_{d}^{n} \right)$$

MiniBooNE - S model

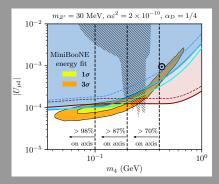

The proton and neutron couplings are related to the quark-scalar couplings by


$$C_{p} = \frac{m_{p}}{v} \left(\eta_{c} f_{c}^{p} + \eta_{t} f_{t}^{p} + \sum_{d} \eta_{d} f_{d}^{p} \right), \quad C_{n} = \frac{m_{n}}{v} \left(\eta_{c} f_{c}^{n} + \eta_{t} f_{t}^{n} + \sum_{d} \eta_{d} f_{d}^{n} \right)$$

• η_t and η_c constrained from $B \to K + inv$ and $K \to +\pi inv$ decays.

- η_d determines coupling of S to electron pairs and so controls $B \to Ke^+e^-$ and $K \to \pi e^+e^-$.
- So all terms in the coherent neutrino scattering are constrained from rare B and K decays.

MiniBooNE - 5 model Signal


Signal with respect to the Z' model.

$$\mathcal{R} = rac{\int \Phi rac{d\sigma_S}{dT} dT dE_{
u_{\mu}} imes (\mathcal{B}(S o e^+e^-) + \mathcal{B}(S o \gamma\gamma))}{\int \Phi rac{d\sigma_{Z'}}{dT} dT dE_{
u_{\mu}} imes \mathcal{B}(Z' o e^+e^-)} \,,$$

Denominator is evaluated at the benchmark point

 $m_{Z'} = 30 \text{ MeV}, \ \alpha_{Z'} = 0.25, \ \alpha \epsilon^2 = 2 \times 10^{-10}$ to explain the MiniBooNE anomaly. The ν_{μ} flux at the Booster Neutrino Beam in the neutrino run is denoted by Φ .

MiniBooNE - 5 model Constraints

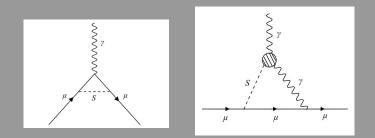
Can explain MiniBooNE and still be consistent with CHARM-II and MINER νA constraints as

$$rac{\sigma_{\mathcal{S}} imes (\mathcal{B}(\mathcal{S}
ightarrow e^+ e^-) + \mathcal{B}(\mathcal{S}
ightarrow \gamma \gamma))}{\sigma_{Z'} imes \mathcal{B}(Z'
ightarrow e^+ e^-)} < 1$$

for $E_{\nu_{\mu}} = 20$ GeV where the denominator is evaluated for the parameter values with $|U_{\mu4}| = 10^{-4}$.

Predictions - S model

BP	${\cal B}(S o \gamma\gamma)$	$\mathcal{B}(S o u ar{ u})$	${\cal B}(S o e^+ e^-)$	$\mathcal{B}(K_L o \pi^0 u ar{ u})$	$\mathcal{B}(B_s o u ar{ u})$	${\cal B}(B o {\cal K}^{(*)} \gamma \gamma)$
1	0.093	0.907	$4.26 imes10^{-5}$	$1.71 imes 10^{-9}$	$5.13 imes10^{-7}$	$1.3 imes10^{-6}$
2	0.717	0.282	$7.06 imes10^{-4}$	$3.61 imes 10^{-11}$	$3.54 imes10^{-7}$	$3.7 imes10^{-5}$
3	0.496	0.504	$5.93 imes10^{-5}$	$9.02 imes 10^{-10}$	$4.14 imes10^{-7}$	$1.7 imes10^{-5}$
4	0.165	0.835	$1.10 imes10^{-4}$	$1.73 imes10^{-9}$	$1.43 imes10^{-6}$	$2.65 imes10^{-6}$
5	0.829	0.170	$9.72 imes10^{-4}$	2.04×10^{-10}	$1.72 imes 10^{-7}$	$6.8 imes10^{-5}$
6	$4.58 imes10^{-6}$	0.999	$7.10 imes10^{-4}$	$1.89 imes10^{-9}$	$1.01 imes 10^{-6}$	$6.5 imes10^{-11}$
7	$3.95 imes 10^{-4}$	0.997	$2.14 imes10^{-3}$	$2.84 imes10^{-9}$	$4.86 imes10^{-7}$	$7.6 imes10^{-9}$


• $K_L \rightarrow \pi^0 + \text{inv}$ can be close to the KOTO bound.

- Resonance in $B \to K^{(*)}\gamma\gamma$ is the main prediction.
- The branching ratio of S to electron-positron pair is tiny and so $b \rightarrow s\ell^+\ell^-(B \rightarrow K^{(*)}\ell^+\ell^-)$ decays mostly SM.

Alakabha Datta (UMiss)

Interesting directions in Flavor Physic November 7, 2023 33 / 37

$a_{\mu}, a_{e} \text{ constraints/predictions}$

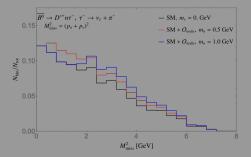
Because of small S coupling to leptons the Barr-Zee diagram dominates .

$$\delta(g-2)_{\ell}^{S\gamma\gamma} \approx \frac{\eta_d}{4\pi^2} \frac{\kappa m_{\ell}^2}{\nu} \ln \frac{\Lambda}{m_S}, \qquad (3)$$

 η_d and κ control the $S \rightarrow e^+e^-$ and $S \rightarrow \gamma\gamma$ rates.

34/37

 ν_4 in Effective Theories- Heavy new physics ν_4 neutrinos can be produced and decay through operators after integrating heavy fields like leptoquarks, new gauge bosons etc.


• For $d_i \rightarrow d_j + \text{inv} \rightarrow d_j \bar{n}n$ - one can study in an effective field theory- ν SMEFT or SMNEFT:

$$(\bar{n}_{p}\gamma_{\mu}n_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}),(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{n}_{s}\gamma^{\mu}n_{t}),(\bar{\ell}_{p}^{j}\sigma_{\mu\nu}n_{r})\epsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}d_{t})$$
$$(\bar{\ell}_{p}^{j}n_{r})\epsilon_{jk}(\bar{q}_{s}^{k}d_{t})$$

- With the $B^+ \rightarrow K^+ + \text{inv}$ measurement and other $B \rightarrow K^* + \text{inv}$ bounds scalar operators are preferred (arXiv: 2309.02940).
- But no clear connection to other sectors but RGE effects can generate operators like $\bar{\nu}\sigma_{\mu\nu}nF^{\mu\nu}$ which can contribute to neutrino scattering.

ν_4 in Effective Theories.

- ν_4 do not have to be produced or decay through mixing. New sources of production and decay in Effective Theories. For example $\bar{n}n$ production from *B*, *D* decays.
- Allows one to explore ν_4 in Meson decays at facilities like Belle II, FASER, DUNE near detector etc.

 $B \to D^* \tau X$ where $X = \nu, n$ with $\tau \to \pi \nu_{\tau}$. Note presence of n might explain the $R_{D^{(*)}}^{\tau/\ell} \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$ $(\ell = e, \mu)$ Alakabha Datta (UMiss) Interesting directions in Flavor Physic November 7, 2023 36/37

Summary

- Several puzzles in $\bar{b} \to \bar{s}$ transitions in semileptonic and nonleptonic B decays.
- Unified decscription may be possible in effective theory through RGE effects (SMEFT)
- New evidence for $B^+ \to K^+ + \text{inv.}$ Interpreted as $B^+ \to K^+ + S$, where S is a short lived scalar that decays to neutrinos by coupling to a sterile neutrino ν_4 , which mixes with the light neutrino.
- These effects may be the source of the MiniBooNE LEE events.
- $b \rightarrow s \nu \bar{\nu}$ may indicate heavy new physics with a sterile neutrino-SMENFT. This has interesting signatures in *B* decays.