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Introduction

The topic of stellar structure has been developed over many years
either in Newtonian gravity or later in General Relativity (GR).
Motivated by the claim that pressure at core of the compact star
model could have anisotropic structure many models have been
developed imposing the anisotropic pressure concept (assuming
radial and tangential pressures are different) to derive realistic
stellar models within the GR context and in modified gravity as
well. The GR theory has been proven to be a successful theory of
gravity on solar system scales by many observational tests and
also on black hole scales using black hole shadows observations
by Event Horizon Telescope.



Introduction

On the cosmological scales, the GR does not provide answers for
explaining the late accelerated expansion. Even in presence of a
cosmological constant A, the discrepancy of the current Hubble
parameter Hy value, between early universe observations by
Planck satellite and late universe measurements by distance
ladder or strong lensing, may point out the need to modify the GR
theory. Many efforts have been done to generalize GR theory by
using general function in Einstein-Hilbert action instead of the Ricci
invariant, e.g. f(R), f(G), f(T) and mimetic gravity.



Introduction

In fact, these modified theories kept the fundamental assumption
that the covariant divergence of the energy-momentum vanishes,
i.e. 7%.o = 0 where the semicolon denotes the Levi-Civita
covariant derivative. On the contrary, Rastall attempted to modify
GR by dropping this assumption replacing it by setting 7 %3., = ag
where ag vanishes in flat spacetime (vacuum) and recovers GR,
otherwise it does not'. Rastall showed that az o« dsR is a
reasonable choice which reflects the non-minimal coupling
between matter and geometry. Interestingly, some cosmological
models have been constructed using RT?

"Rastall, Phys. Rev. D 6, 3357 (1972)
2C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues,
Phys. Rev. D 85, 084008 (2012)



Introduction

as well as black hole solutions®.

Recently, Vissar claimed that RT is completely equivalent to GR*.
On the contrary, Darabi et al. investigated Visser’s claim but they
concluded that Visser misinterpreted the matter-geometry coupling
term which led him to wrong conclusion®. In addition, they showed
that by applying Visser’s approach to f(R) theory one may
conclude that it is equivalent to GR as well which is not true.

3K. Bamba, A. Jawad, S. Rafique, H. Moradpour, The EPJC 78(12), 1 (2018)

4M. Visser, Phys. Lett. B 782, 83 (2018).

5E Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C
78, 25 (2018)



Introduction

Different studies have proven that RT is not equivalent to GRS.
Visser’s conclusion is correct when Ricci scalar vanishes for black
holes in general, otherwise the claim is incorrect and both theories
are not equivalent. One of the good examples which may reveal
the contribution of the matter-geometry coupling in RT in contrast
to GR is the stellar models when the presence of matter plays a
crucial role. It is the aim of the present study to derive a
anisotropic static spherically symmetric interior solution using RT
and confront it with pulsars observations.

63, Hansraj, A. Banerjee, P. Channuie, Annals Phys. 400, 320 (2019)



Rastall gravitational theory

In Riemann geometry, by making use of the contracted Bianchi
Identity on one hand and the minimal coupling procedure on the
other hand,

1
gaﬁ;a = (Raﬁ - EgaBR);a =0, Taﬁ;a =0, (1)
this led Einstein to formulate the consistent field equations of GR

gaﬁ :Xﬂlﬁs (2)

where y = 8nGn/c* where Gy is the Newtonian gravitational
constant and c¢ is the speed of light, G,z denotes Einstein tensor,
R.p denotes Ricci tensor and R = g*#R, denotes Ricci invariant.



Rastall gravitational theory

Rastall, however, dropped the minimal coupling procedure
assuming non-divergence-free energy-momentum in curved

spacetime
‘Taﬂ;a #0, 'TQB;Q =ag= gaﬁR, ()

where the constant of proportionality € measures how much the
conservation law is locally violated. According to this assumption
Rastall obtained a consistent set of field equations

1 .
gaﬁ - Raﬁ - EgaﬁR :X((T;zﬁ - Eg(xﬁR)- (4)



Rastall gravitational theory

Alternatively, Eqg. (4) can be rewritten as

1
Raﬁ - (E _)(E) ga,BR :XTafﬂ- (5)

Contracting the above equation gives

(1 -4 &R =T, (6)

where 7~ = g7, op is the trace of the energy-momentum tensor.
Thus the field equations of RT read

Gop = XT ap- (7)

where

T =Top+ 4 ,,ga,gT 1-4ye+0. (8)

1_



Rastall gravitational theory

It proves convenient to use a dimensionless Rastall’s parameter
€ = &, c.t.”. Then, Eq. (5) becomes

1
Rwﬁ - (E - 6) gaﬂR =X7T ap> 9)

and the tensorﬁﬁ in Eq. (7) reads

1
T op Taﬁ+ gaﬁ‘T €+ e (10)
For e = 0 case, the conservation law is restored and the GR
version of gravity is recovered. In this sense, RT generalizes
Einstein’s one by assuming a local violation of conservation law in
curved spacetime due to non-minimal coupling between matter

7A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Phys. Rev. D 92(4),
044020 (2015)



spherically symmetric interior solution

Otherwise, flat spacetime, both theories are equivalent. Therefore,
one of the important applications, which differentiate both theories,
is stellar structure models when presence of the matter sector
plays a crucial role in interior solutions. Providing that the static
spherically symmetrical spacetime is given by the following metric®

ds® = —F(r)dt® + G(r)dr? + r?(d¢? +sin?0d¢®),  (11)
where F(r) and G(r) are unknown functions. The Ricci scalar of
the above line-element takes the form:

—2F" GFr? + F"2Gr? + rFF' (rG’' —4G) + 4F?[rG’ + G(G -1
R(r) = 2,(:262r2 )+4F7 @=1 (1)

8We take the geometric units which set y = ¢ = 1.



spherically symmetric interior solution

We assume the energy-momentum tensor for a anisotropic fluid
with spherical symmetry, i.e.

T = (Pt +p)u"Us + pidg + (Pr = Pt)* g, (13)

where p = p(r) is the fluid energy density, p, = p,(r) its radial
pressure (in the direction the time-like four-velocity u,), pr = p:(r)
its tangential pressure (perpendicular to u,) and £ is the unit
space-like vector in the radial direction. Then, the
energy-momentum tensor takes the diagonal form

Taﬁ = diag(_p’ Pr, Pt, pt)



spherically symmetric interior solution

Applying Rastall’s field equations (7) to the spacetime (11) where
the matter sector is as given by (13) we obtain, respectively, the
components tt, rr and 66 (= ¢ ¢) as follows:

1G'+G(G-1) e

= G2r2 _1_46(p_pf_2pf)7
F'r-F(G-1) e
pr oz T 1oacPPr—2p).
F2G(F'r+F')-G'F'r|-2G'F2—F?Gr ¢
pt 4F2G2r +1_4€(p_pf_2(dl4)
Additionally, we define the anisotropy of the system (14) using the
parameter
2F" GFr? — F2Gr? — rFF' (rG’' +2G) - 2F?[rG’ —-2G(G - 1
A(F) = pr—pr = ( )=2F?[1G' ~2G(G-1)]

4F2G2r2
(19)



spherically symmetric interior solution

First, we assume the metric potential G to have the form

G(r) = ———, (16)

with a, is a dimensionless constant to be determined by boundary
condition and R is the radius at the star boundary. We note that
the above ansatz is regular everywhere inside the star, i.e.

0 <r < R, where |as| < 1. Substituting (16) in the anisotropy
parameter (15), we get

ajr?(6R*—8R2aZr? + 3ajr*)
R8
(R2-a2r?)3[r(2FF" — F’?)(R? — a2r?) - 2FF'(R? + 3a2r?)] ’
4rF2R8 '

A(r) =

+

7)



spherically symmetric interior solution

Now, we impose the second condition by assuming that the
component gy has no contribution on the anisotropy parameter, i.e.

ajr?(6R*—8R2azr? + 3ayr*)
A(r) = =8 .

(18)

This choice clearly gives no anisotropy at the center, r = 0, which
is physically a reasonable feature. Using Egs. (17) and (18) and by
solving for the metric potential F, we obtain:

[agR? +2a1a3(R? - a5r?)?
B 8aj(R2-a5r?)?

F(r)

, (19)

where the constants of integration ay and a; are dimensionless to
be fixed by matching conditions. Up to this step the obtained
results are the same as given by®.

9S. Das, F. Rahaman, L. Baskey, EPJC (10), 853 (2019).




spherically symmetric interior solution

Substituting the metric potentials (16) and (19) into the system
(14), we get the energy-density, radial and tangential pressures in
the form

R21°

1233 { 3a1a)° a

2
P 2e-1)8 - 2| % (1) a7y 4 B (5
Rlm@e ) ar]| 2z G| (et g )

4 Ja a2
+%Z [a185 (58¢-29) 4 ao (5¢-7)]R*r* - 2a2 a‘:z (2e-1)+ %" (4e-5)|R®r® + [(4a1 23 +ag)sf(25|a§+au)]RB}.
12a3 ara)® s 3 |aad a 2
" = 2 "2 (18e-1)r -~ 2| 2 (74e-5)+ 2 (2¢+ 1) |R2P
P Rs[za‘ag(RQ—a§r2)+a(,R2]{ 6 (18e-1)¢ 2| 3 (4e-5)+ 2 (1)

arag
6

"
+ %2 [a123 (586-5) + a0 (5¢+2)]R*r* —2a3

(42¢-5)+ %(4<+|)}H5r2+[(43‘ a3 +a)e- ga‘as

1222 10 o o
= % {ﬁ(gkz)rﬁf %2 74¢-8) + age|R? 1S + %Q[a‘ a2(586-12) +5ap€] R*r*

) 2aaf
" T PlRa(R-ar)tar]| 3 3

R°r2 +

a2
232 'Taz(‘,z‘,‘.)w (4282 +a0)e - %a‘ a2

R® } N (20)



spherically symmetric interior solution

Equations (20) coincide with the GR version when Rastall
parameter e vanishes'?. It is to be mentioned that the anisotropic
force, F; = %, becomes attractive if p; — pr < 0 and repulsive if
p:— pr > 0. The mass contained within a radius r of the sphere is
defined as

M(r) = 4 fo p(0)0z. (21)

Using the energy-density as defined in Egs. (20) and the above
equation (21), we get

2
V2a, asr

256a%al0r?
ap +2a152 tanh ™! +a2Nr 172
2 RN 2

M(r) = (26—1)(2R2—a§r2)(2H4+

-3 { V2ay R%

41018
ERENEN 2

2r2a;at 4a2a8r* 8a3a)2
agrt —2a3R%r2) +30H25[agﬁ‘5 + TZ(4a12ag -2aja3ay+a2)R* + %(ao —4a;a%)R% + % . (22)

where 8 = /(a0 +2a1a5)as.

107 Roupas, G.G.L. Nashed, Eur. Phys. J. C 80(10), 905 (2020)



spherically symmetric interior solution

It proves convenient to use the compactness parameter of a
spherically symmetric source with radius r,
B 2M(r)

u(r) P (23)

to study the stability of compact objects. Similarly we use the
gravitational red-shift parameter Z which is related to the metric
potential as

1+2= (24)

—On



Physical conditions for a stellar model

For a stellar model to be physically well behaved, it needs to
satisfy the following conditions:

(i) For the geometric sector, the metric potentials F and G should
be free from coordinate and physical singularities within the interior
region of the star 0 < r < R, where the center (boundary) isatr=20
(r = R) respectively.

(ii) The metric potentials of the interior solution and the exterior!
should match smoothly at the boundary.

(iii) For the matter sector, the fluid density, radial and the tangential
pressures should be free from coordinate or physical singularities
within the interior region of the star. In addition, they should be
maximum at the center of the star and monotonically decrease
towards the boundary of the star. i.e.

In our case the exterior solution is nothing rather Schwarzschild’s one, since
vacuum solutions of both GR and RT are equivalent.



Physical conditions for a stellar model

a. p(r=0)>0,p(r=0)=0,p"(r=0)<0and
p'(0<r<R)<0,
b. p(r=0)>0,p/(r=0)=0,p/(r=0)<0and
p;(0<r<R)<0,
(

c. pr(r=0)>0,p;(r=0)=0,p;(r=0)<0and
p;(0<r<R)<0.

(iv) At the center of the star (r = 0), the anisotropy parameter A
should vanish, i.e. p,(r =0) = p;(r = 0), and increasing toward the
boundary, i.e. A’(0<r<R)>0.

(v) At the boundary of the star (r = R), the radial pressure should
vanish, i.e. p,(r = R) = 0. However, the tangential pressure at the
boundary should not necessarily vanish.



Physical conditions for a stellar model

(vi) Within the star (0 < r < R), the density, radial and tangential
pressures should be positive, i.e. p(0 <r < R) >0,
pr(0<r<R)>0and p;(0<r<R)>0. (vii) The fluid density,
radial and tangential pressures should fulfill the following energy
conditions:

a. Null energy condition (NEC): pc®+p; >0, p > 0,
b. Weak energy condition (WEC): pc®+p, >0, p > 0,
c. Dominant energy conditions (DEC): pc? > |p;| and pc? > |pyl,

d. Strong energy condition (SEC): pc? +p, > 0, pc® +p; > 0,
pC?—pr—2p; > 0.



Physical conditions for a stellar model

(viii) The causality condition should be satisfied, that is the speed
of sound should be smaller than unity everywhere inside the star
and monotonically decrease toward the boundary, i.e. for the radial

velocity 0 < v,/c = 15 ,/Z—‘Z <1 and v/? <0, and for the tangential

velocity 0 < vi/c =1 \/‘Z,:’;’s 1and v/ <0.

(ix) The stability condition should be satisfied, i.e.

—1 < (v2 - v?)/c? < 0 within the star.

(x) The gravitational red-shift should be finite and positive
everywhere inside the star and decreases monotonically toward

the boundary, i.e. Z>0and Z’ <0.



Physical conditions for a stellar model

(xi) The adiabatic index stability condition for anisotropic star
should be fulfilled, i.e. the adiabatic index I > y where y =4/3 is
the adiabatic index corresponds to the isotropic case.

We note that the stellar model which fulfills the above mentioned
conditions is physically viable and well behaved. In the following
sections we are going to examine the model at hand with these
conditions investigating possible roles of Rastall parameter.



Physical properties of the model
Non singular model

From Egs. (16) and (19) one finds that the metric potentials at the
center read
(ag+2a1a2)?

2

This ensures that the gravitational potentials are finite at the center
of the star. Moreover, the derivatives of these potentials are finite
at the center, i.e. F’(r =0) = G’(r =0) = 0. Equation (25) ensures
that the metric is regular at the center.



Physical properties of the model

Non singular model

From Eqgs. (20) one finds that the density, radial and tangential
pressures at the center are

 —12af[ag(e~1) +2a1a5(2¢~1)]

r=0)= s
A ) R2(ag +2ayaj3)
12a2[ape + 2a1a2(6e—1)]
r=0)=pi(r=0)=—2 -~ 26
pr(r =0)=pi(r=0) R2(ag+2a1a3) (26)

These ensure that the anisotropy parameter has a vanishing value
at the center. Additionally, the Zeldovich condition states that the
radial pressure must be less than or equal to the density at the

center, i.e. 2O <1 je.
p(0

)

—3(ap +4a1a3)e+2ara;
3(ap +4ata3)e—3(ap +2ara2?)

<1. (27)



Physical properties of the model

Non singular model

Using Egs. (20) we give the derivative of energy density, radial and
tangential pressures, respectively, as follows

2I’324
R8 (agR2 + 2 aya,2R2 — 2a; ap412)?
—676r*R*a;2a,® + 1352r*R*a1%a,8¢ - 168 r°R%ay a®ag e
+520r*R*ay ax%ap e —332r*R*ay a®ay — 120 R8ay*a;?
—27R*ayx*r*ap® + 18 R*ax*r*ape — 120 ag R®ay2a; + 192 ag R8ay2a; e
+2429°R8 +440r°R%a,%a,"'° — 880r° R%a,%a, %€ + 56 ag° R%a,2r?
+108r8R%ay ax®ag + 464 r’R%a;2a,% — 928 r’R%a;2a,%¢
+240 R%ay*a1%e — 544 xR%a*r?ag ay e + 344 R8ax*rlag a;

—40a9°R%a,°r’e - 30 aost}, (28)

{21 6!’831 232126— 108 I’8&128212



Physical properties of the model

Non singular model

Pr

—2ra24
R8(ag R2+2ay a,?R%2-2ay ag“r2)2
+1352r*R*a12a,%¢ —100r*R*a1%a,® — 168r°R%a; ax8ap e
+520r*R*a; a®age+4r*R*a; ax®ay +240 R8ay*as%e
+9R*ax*r*ap? + 18 R*ax*r*ap’e — 8 ag R®ax%as + 192 ay R%as2a; e
—16a9°R%ax?r? —40a92R®axr’e + 6 a9°R®
+24a0°R% - 12r8a;%a)? + 56 r°R%a;%a,'" - 880 r°R%a;2a, e
—24R8ay,*a1? - 544 R%a,*r?ag as e + 8 R%ax*ray a

{216r8a12a2125—4r6R2a1 a%ay

+80r°R%a;%a,% — 928 r2Fx’6a12a266}, (29)



Physical properties of the model

Non singular model

—4rax*
R8 (apR? +2a1a,2R? — 2aax*r?
—24r8a,%a,'%2 +96r%R%a%a, "% — 440r°R%a,%a, "%
+676r*R*as2a8e - 84r°R%a a8 age + 16r°R%a a8 ag
—464r°R®a;2a,%¢ + 96r°R8a;2ax® 4+ 260r*R*asax’ ape
—48r*R*ay ax®ay - 24 R%ay* a2 + 120 R®ayx*as%e
—272 R%a,*r?apga; e+ 48 R®ax*r’aga; + 9 R*ax*r*ap®e
+96 a9 R8ay2a; e — 20 g2 R%ar%r’e — 144r*R*a% a8

)2{108r8a12a2126

+12a,°R8e-16 a9 R832231}. (30)

We use Egs. (28)—(30) to show that the gradients of the
energy-density, radial and tangential pressures are negative.



Physical properties of the model

Non singular model

The radial and tangential sound velocities are given

vr

o
dp

—-100r*R*a;2a,8 +4r*R*ay ay%ay —8ay R®ay2ay +192ay R8ay2aq e— 1692 R%ay2r?

= —{216rsa1 252126— 12raa1 23212 +56r6R2a123210 —880 r8R251 2521°e+1352r4R4a1 26286

—168r6R2a1 a28a0 e—4r6R2a1 azeag Jr80r2RBz=112az6 —928r2Fiea12a266+520r4R4a1 326606
+240R8ay%a,2e—24R8ay%a,? ~544 Ray* rPag as e+ 8 R%ap* rPag ag + 9R*ap* r*ag? + 18 R4 ap* r* ag®e
—40292R®ay2rPe + 6a02R8+24a02R85}{216r8a12a2125—168rsﬁ‘2a1 ay8age—120R8ay%a,?
-108r8212a,'2 + 44015R%a,2a,"0 - 880152222, 10 — 676 r*R*a; 22,8 + 135214 R% a1 2ay8¢
+108r8R%aq apBag +464r°R%a12a,% — 9282 R%a;% 2,8 + 520 r* R* ay a8 ap e~ 332r* R*ay a,% 4

+240 Heaz4a125—544H8a24r2a0 aq e+344R6a24r2a0 aq —27R4a24r4302 +18R4a24r4a025

-1
+192ag R8a2231 e+56a02Fi6322r2 —40802R65221’26—30502R8 +24302R86— 120ay R8322a1} , (31)



Physical properties of the model

Non singular model

Vi

dj

C% = —2{108785112a2125—24rsa12a212 +96r6H2312a21° —440r6R2a12a21°e+676r4H4a12a285
—144r4FE4a12a28 —48r4R4a1 52630 + 96 ag R852251 €

—84r8R2ay ay8ag e+ 1618 R%a; a8ay —464r°RPay2a,% e+ 96 P R%a;2a,8 +260r*R*ay ax8ag e

—24 Hsaz4a1 24120 R8a24a1 2e-272 H6a24r2a0 aje+48 H6a24r2a0 a;+9 R4a24r4a025—16a0 R8a22a1
—20a02R6322r25+12302R85}{—108raa123212+216rBa1232125+440r8R2612a21°—880r6R2a12321°s
—676r*R*a;2a,% +520r* R*ay ap%ag e~ 27 R*ap* r* ag? + 24 292 R®e — 30 2y 2 R®
+1352r*R*a12a,8¢ - 16818 R2ay a®ag e+ 108 P R?ay ap®ay + 46412 RBa; 22,8 - 9282 RBay2a,%¢

-332r*R*ay ay%ap - 120 R®ay* a2 + 240 R®ay* ay 26— 544 RPay* rPag aq e+ 344 R® ay* 1P ag ay

-1
+18R*ay*r*ay2e—120ag R®axay +192ag R®ax2ay e+ 56 a2 R®ap2r? — 40292 R8ay?r e} . (32)

We use Egs. (31) and (32) to show that the sound speeds satisfy
the causality and the stability conditions.



Physical properties of the model
Matching conditions

We note that the exterior spacetime of a static spherically
symmetric star is the same for both GR and RT, since the exterior
region is vacuum. Thus no reason to expect any solution rather the
exterior Schwarzschild one for Rastall’s theory, that is
-1

ds? = —(1 - @)cﬁf2 + (1 - %/’) dr? + r2(d6P + dg?),  (33)
where M is the total mass r > 2M. We are going to match the
interior spacetime metrics (16) and (19) and the exterior
Schwarzschild spacetime metric (33) at the boundary of the star
r = R. Therefore, the continuity of the metric functions, as stated
by condition (ii), across the boundary gives the conditions

ag—2ara2(a%-1)J? oM
12a3(a5-1) R

G(r:R):(a§—1)4:(1——). (34)



Physical properties of the model
Matching conditions

In addition, the radial pressure (20) approaches zero at the star
boundary, prr=r = 0, which reads

231a —10a; aO (20a4 +Sao)ao —4(5ay +230)a0 +2(4ay +3a0)
- [s8aa° —148a1a2+2(116a1 3ap)al - 4(42a; —5ap)as
+24(2ay - ap)a3 — 12ap| € = (35)

The above constraint ensures that condition (v) is fulfilled. From
the above conditions, namely (34) and (35), we get the constraints
on the set os constants {ag, ai, a»} in terms of the start mass M,
radius R in addition to the Rastall parameter €. Using observational
pulsars data, knowing the observed values of M and R, we obtain
the corresponding numerical values for a particular choice of e.



Astrophysical observational constraints

We use the observational constraints of the particular pulsar Her
X-1, whose mass M = 0.85+0.15M; and radius

R =8.1+0.41 km'2, where M, (= 1.989 x 10°° kg) denotes the
solar mass. Then, the boundary conditions (34) and (35) are
adopted to determine the dimensionless constants in terms of the
Rastall parameter e

_ 2.564€-0.4694
© 4542¢-1514"

ap a1 =-6.192ap+1.661and a, = 0.298.

Noting that we select a» < 1 which is required by the regularity
condition of ansatz (16).

12T, Gangopadhyay, S. Ray, X.D. Li, J. Dey, M. Dey, Mon. Not. Roy. Astron.
Soc. 431, 3216 (2013)



Astrophysical observational constraints

Substituting the above expressions into Zeldovich condition (27),
keeping in mind that the RT predictions are not expected to be far
from GR ones (i.e. € should be small), we obtain the following
constraints on Rastall parameter —1.880 < € < 0.259.



Astrophysical observational constraints
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Figure: Plots of the density, radial and tangential pressures given by (20)
versus the radial coordinate r in km of the pulsar Her X-1
(M=0.85+0.15Mp, R =8.1+£0.41 km). We set e = —0.1, ap ~ 0.369,

ai ~ —0.622 and az = 0.298.



Astrophysical observational constraints
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anisotropy, therefore GR and RT predicts same anisotropy in the case of
spherical symmetry as discussed after (15). For e =0 and € # 0, the
gradients of the density, tangential and radial pressures given by Egs.
(28)—(30) versus the radial coordinate r in km of the pulsar Her X-1.
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Astrophysical observational constraints
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Figure: The radial and tangential sound speeds (29) versus the radial
coordinate r in km for the pulsar Her X-1. The plots confirm that the
model fulfill the causality and the stability conditions (viii) and (ix).
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Figure: The weak, null, strong and dominant energy conditions, using Egs. (20), versus the radial coordinate r in km
for the pulsar Her X-1. The plots show that the model fulfill the energy conditions (vii).
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Figure: Figs. (a) and (a) show the behaviours of the EoS parameters,
defined as w,(r) = pr/p and w;(r) = p:/p, at different radial distances
within the pulsar Her X-1 as predicted by RT and GR. We note that no
EoS are imposed at any stage of the present work, while it is evidently
that the result fit well with the linear behaviour whereas the best fit lines
in Fig. (b) and (d) are given by p, =0.414p—-27.6 and p; = 0.223p—-11.8
in RT case.



Astrophysical observational constraints

GR(e=0)
- —RT

o obser

GR (c=0)

31— = RT(e= —0.1)

-~

GR (= 0)
—.— RT(e=-0.1)

0 1 2 3 4 5

r[km]]

6

7

8

(a) Mass function

i -
0o 1 2

3

4
r k]

5 6 7 8

(b) Comp. function

0o 1 2 3

(c) Redshift

4 5

r k]

Figure: The mass function plot confirms the agreement with
observational data. The plot shows that RT predicts compactness values
higher than GR. The redshift is finite everywhere within the pulsar and
decreases toward the surface as stated by condition (x) and also predict
a surface redshift consistent with the upper limit constraints as given by.
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Stability of the model

Equilibrium analysis via Tolman-Oppenheimer-Volkoff equation

We assume hydrostatic equilibrium to be everywhere within the
stable compact star. This configuration, then, can be described by
the GR based TOV equation which gives the following stability

constraint \/_
2(pt — Mq(p + F
(pt=pr) Mglp+pr) VF dpr 0. (36)

r VG ar

where M = My(r) is the gravitational mass within a radius r, which
is defined by the Tolman-Whittaker mass formula

rF' VG

2FVF 47

.
My(r) = 47Tf (Ttt T =T - T¢¢)r2 VFGdr =
0



Stability of the model

Equilibrium analysis via Tolman-Oppenheimer-Volkoff equation

Inserting Eq. (37) into (36), we get

2 F’ dpr
—(pt—pr)— o+pr)— ar

; >F( = FatFg+Fr=0, (38)

where Fg = —%(p+Pr) and F = dpf are the gravitational and
the hydrostatic forces respectively, in addltlon to the anisotropic
force F;. We note that the TOV equation should be modified in RT
due to the non-minimal coupling constraint, 7%s., = €9sR, to
include one more force Fg as following

Fa+Fg+Fn+Fr=0, (39)

where Fg = — 1_645%(,0—[), —2p;). These different forces, for GR
(e =0) and RT (e # 0), are plotted in Fig. 7 using the pulsar
Her X-1 data.



Stability of the model

Equilibrium analysis via Tolman-Oppenheimer-Volkoff equation

In conclusion, we verify the stability of the model via TOV equation
using the pulsar Her X-1 data.
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Figure: Plots of the forces of TOV equation (38) in cases € =0 and

€ = —0.1 versus the radius r using the constants constrained from

Her X-1. In the RT case the negative gravitational force is the dominant
one over the hydrostatic and the anisotropic forces. This guarantees
stable equilibrium configuration for the pulsar.



Stability of the model

Relativistic adiabatic indices

Another verification of the stable equilibrium configuration of a
spherically symmetric object can be done via the adiabatic index,
that is defined as the ratio of two specific heats and can be given

as follows
P+ Pr

pr
For the general case of anisotropic spheroid fluid, it has been
shown that the object is in a neutral equilibrium if its adiabatic
index I =y and in a stable equilibrium if I > y '3, whereas

4 F.
y = _(1 += ) : (41)
3 2|pr| max

r= V2. (40)

13R. Chan, L. Herrera, N.O. Santos, Monthly Notices of the Royal Astronomical
Society 265(3), 533 (1993)



Stability of the model

Relativistic adiabatic indices

Clearly, for an isotropic fluid, the object is in a neutral equilibrium if
the adiabatic index ' = 3, while for I > £ the object is in a stable
equilibrium 4. Using Eq. (41), we get

ra
(ZRB‘ 8( > 22 " " 2)2 {216rBa1232125—12rsa123212+56r6Fiza12a210
R®(agR% +2a1a° R —2ajax*r

2
3R8

+1352r*R*a12a,8 e~ 100r* R* a2 a,® — 168r° R%ay ay8age— 418 R?ay 2,82y +80r°R%a;2a,® —928 P R% a2 a,%¢
+520r4F?4a1 azeaoe+ 18F?482474302€+24302H86—40602R8622r26+6602H8 —880r6R2a1 232106
+4r*R*ay ap%ay +240R8ay*ai%e — 24 R®ap* 212 —544 R8ay* rPag ay e+ 8 R%ap* rPag ag + 9R*ax* r* ay?

+6R%ray* —8R%r3a,% + 3a28r5)

—8ag R®ap2ay +192ag R¥ap2ay 5—16a02H6a22r2}

2
{Rslaoﬂz +2ay ap°R? - 2a, az“er }{ra24(216r8a1 2a,126-12r8a;2a,'2 + 56 r°R%a12a, 10 - 880r°R2a;2a, 10

+1352r* Fl“a1 2e’:1255—100r4 Fl“a1 2628 —168(8H2a1 a28a05—4r6R2a1 agBag +80 72R6a1 2326 —928r2R6a1 28266

4,

+4r4Fi4a1 a25a0 +240R8524a1 26—24F18324a1 2 —544R6a24r2aga1 s+8R5a24rzaga1 +9R4ag4r4a02 + 18R4az4r é

-1
—8ag R®ap2ay +192a9 R®ap2ay e— 16292 R%ap2r? —40ay2R%ay2rPe + 6292 R® + 24 ag? R8e + 520r* R* a4 326306)}

4H. Heintzmann, W. Hillebrandt, aap 38(1), 51 (1975)
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Relativistic adiabatic indices
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Figure: Plots of the Adiabatic indices y, [, and I't, namely (42)—(44),
versus the radius r using the constants constrained from Her X-1. For RT,
the adiabatic index y less than the GR case but still greater than the
neutral equilibrium value y = ‘3—‘. The radial and tangential adiabatic
indices have higher values whereas the stability constraints I', >y and

It >y are fulfilled everywhere within the pulsar.



Stability of the model

Relativistic adiabatic indices

From Eq. (40), we obtain the adiabatic index of solution (20) in the form

= —4{(4&11 a2R? +3a0R2 - 4ay ap*r2) (R? - 3,%12)° {216r8a1 2ay'2e—12r8a,22,"% + 56r°R%a 22, "0 ~ 880r° A2 4y 2

a,10¢+1352r*R*a;2a,8¢ - 100r*R*a; 22,8 — 1688 R2ay ap8agy e — 41 R2ay ap8ag + 80r2R%ay 22,8 — 928 r2RBay2a,5¢
+520r*R%ay apBag e+ 4r*R%ay ap®ay + 240 R8ax? a2 — 24 RBay*ai2 544 RBap*r2ay a e + 8 R%ap* r2ap ay
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+24302Fise]}{[3631 r8ay10¢-2ay r8ay10 + 108 R2ay 2,8 — 1485 R2ay ap8¢ - 20r* R%ay a,® + 232 R*r*ay%a4 €
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Relativistic adiabatic indices

and

M= —{[108r8a12a2‘25—24r8a123212+96r6Fl2a123210—440r6R2a12a2106+676r4Fl4a123285—144/AR4a12a28
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+24R8ay2a, 5—12R5a22r2a0e+65R5a0"216rsa12a2125—108r8a126212+440r6H2512321°—880r6R2a12a21°e
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More Observational Con
Pulsars’ data

Table 1: Observed mass-radius of twenty pulsars and the corresponding model parameters (e = —0.1).

Pulsar obs. mass (Mp) obs. radius [km] est. mass (Mp) ap a4 ED

Her X-1 0.85+0.15 8.1+0.41 0.905 0.369 -0.622 0.298
RX J185635-3754 0.9+0.2 6 0.949 0.517 -0.706 0.369
LMC X-4 1.04+£0.09 8.301+0.2 1.103 0.375 —-0.658 0.330
GW170817-2 1.27+£0.09 11.9+14 1.351 0.437 -0.625 0.301
EXO 1785-248 1.3+0.2 8.849+0.4 1.372 0.507 —-0.699 0.364
PSR J0740+6620 1.34+0.16 12.71+1.19 1.426 0.370 -0.623 0.298
M13 1.38+0.2 9.95+0.27 1.459 0.481 -0.683 0.351
LIGO 1.4 12.9+0.8 1.489 0.381 -0.628 0.303
X7 1.4 145+1.8 1.492 0.340 —-0.607 0.284
PSR J0037-4715 1.44+0.07 13.6+0.9 1532 0.372 -0.623 0.299
PSR J0740+6620 1.44+0.16 13.02+1.24 1.531 0.388 -0.632 0.307
GW170817-1 1.45+0.09 11.9+1.4 1.539 0.425 —-0.652 0.325
4U 1820-30 1.46+£0.2 11.1+£18 1.546 0.457 -0.670 0.440
Cen X-3 1.49+0.49 9.178+0.13 1.566 0.556 -0.731 0.388
4U 1608-52 1.57+0.3 9.8+1.8 1.651 0.550 -0.727 0.385
KS 1731-260 1.61+0.37 10+2.2 1.692 0.552 -0.728 0.386
EXO 1745-268 1.65+0.25 10.5+1.8 1.736 0.540 -0.720 0.380
Vela X-1 1.77+£0.08 9.56+0.08 1.845 0.627 -0.781 0.424
4U 1724-207 1.81+£0.27 122+14 1.909 0.512 -0.702 0.366
SAX J1748.9-2021 1.81+£0.3 11.7£1.7 1.906 0.532 -0.715 0.376
PSR J1614-2230'% 1.97+£0.04 13+2 2.076 0.522 -0.709 0.371
PSR J0348+0432 2.01+0.04 13+2 2117 0.532 -0.715 0.376

5We note that the estimated mass for massive pulsars slightly exceeds the
observational value which would impose more strict constraints on Rastall
parameter to be € = 0.06.
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Table 2: Calculated physical quantities of the most interest.

z HG
Pusar 2(0) on © G eor @(RF o p-2eb p-p-2mln 2
lo/em®) lg/em®] [Pa] [Pa)

Her X-1 9.18x10™ 7.39x107" 0.445 0.376 0.246 0.195 6.27x10%* 5.73x10%" 0.204
RX J185635-3754 2.53x10" 1.81x10'® 0.608 0.451 0.402 0.276 1.25x10% 1.26x10% 0.340
LMC X-4 1.07x10'S 8.19x10™ 0506 0.406 0.304 0228 6.53x10% 6.08x10% 0.260
GW170817-2 4.33x10" 3.48x10™ 0.450 0.379 0250 0198 2.93x10% 2.68x10% 0.208
EXO 1785-248 1.13x10'® 8.21x10™ 0.593 0.444 0.388 0.269 5.80x10% 5.76x10% 0.329
PSR J0740+6620 3.75x10™ 3.01x10™ 0.446 0.377 0.247 0.196 2.55x10% 2.33x10% 0.205
M13 8.39x10™ 6.20x10™* 0.556 0.429 0.353 0.253 4.63x10% 4.45x10% 0.302
LiGo 3.76x10" 3.00x10™ 0.454 0.381 0255 0.201 252x10% 231x10% 0213
X7 261x10™ 2.14x10" 0.424 0.366 0.226 0.183 1.85x10% 1.69x10%* 0.183
PSR J0037-4715 3.29x10™ 2.64x10™ 0.447 0.378 0.248 0.197 2.24x10% 2.04x10% 0.206
PSR J0740+6620 3.77x10™ 2.99x10™* 0.460 0.384 0.260 0.204 2.50x10% 2.29x10% 0.219
GW170817-1 5.04x10™ 3.89x10™ 0.494 0.401 0293 0222 3.14x10% 291x10% 0.250
4U 1820-30 6.33x10" 4.77x10M 0528 0.416 0325 0239 3.70x10% 3.49x10% 0.279
Cen X-3 1.19x10'® 8.24x10"* 0.677 0.477 0.469 0.305 4.98x10% 5.51x10% 0.386
4U 1608-52 1.08x10' 7.15x10'* 0.664 0.472 0.456 0.300 4.45x10% 4.82x10% 0.378
KS 1731-260 9.92x10" 6.89x10" 0.669 0.474 0.461 0302 4.24x10% 4.63x10% 0.381
EXO 1745-268 8.74x10™ 6.14x10" 0.646 0.466 0.439 0.293 3.95x10% 4.18x10% 0.366
Vela X-1 1.29x10'® 8.33x10"* 0.861 0.538 0.645 0.371 3.01x10% 5.11x10% 0.486
4U 1724-207 6.04x10™ 4.35x10™ 0.600 0.447 0.394 0.273 3.04x10% 3.04x10% 0.334
SAX J1748.9-2021 6.91x10" 4.89x10" 0633 0.460 0.426 0.287 3.22x10% 3.35x10% 0.357
PSR J1614-2230 5.46x10" 3.90x10" 0616 0.454 0410 0.280 2.65x10% 2.70x10% 0.346

PSR J0348+0432 5.59x10'* 3.96x10'* 0.632 0.460 0.425 0.287 2.61x10% 2.71x10% 0.357




More Observational Constraints
Mass-Radius Profile

As is shown in Table 2 the surface densities of the listed pulsars,
2.14x10' < pr < 1.81x10" g/cm3, are mostly compatible with a
neutron core. For four different values of the surface density of the
pulsars pr = 2.7x 10" g/cm?®, 4x 10" g/cm?3, 6 x 10'* g/cm® and
8x 10" g/cm® we plot the corresponding compactness-radius
curve In all cases the maximum compactness values do not
exceed unity. However for a compact object to be stable it should
satisfy Buchdahl compactness bound U = ZCGz",’qM < 8/9 (for isotropic
sphere). We visualize Buchdahl upper bound on the compactness
parameter with the corresponding maximum radii as obtained for
the four surface densities.




More Observational Constraints
Mass-Radius Profile

It is convenient to give the model parameters {ag, a;, az} in terms
of the total compactness parameter U. Recalling the matching
conditions (34) and (35) we write

3 1
3{[(u—g)(1-u)11+%(1—u)]5-1‘—8(1-u)%u}\/—(1—U)2(U—2+4(1—U)4 ~6VI-U+4(1-U)%)
N [—‘5(1—U)%+V1—U—‘§(1-u)%}(e-‘§)(u-1)

ao

3
3

[mf(w -U) % )ao+4 \/—(1—U)2(U—2+4(1—U) -6 ﬂ+4(17u)% )

1
aj=-5 3
U-VT-U+2(1-U) 4 -1

ap = J1-(1-U)1/4. (45)
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Mass-Radius Profile
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(a) Compactness- (b) Mass-Radius (c) Neutron star core
Radius

(a) Compactness-radius profiles for four surface densities, the horizontal dot and dash lines visualize Buchdahl (U = 8/9) and the SEC bound (U(e = ~0.1) = 0.603) on the

8 10 12
RIkm]

compactness parameter. Clearly both constraints give almost the same maximum radii. (b) Mass-radius profiles for four surface densities combined with observed mass-radius values
of the pulsars in Table 49. The diagonal dot and dash lines set Buchdahl and SEC physical regions. Clearly all pulsars are below the SEC exclusion limit. The horizontal dot lines give
the maximum possible mass as obtained by the SEC. (c) Pulsars on the red, green and blue mass-radius profiles are suggested to have neutron cores whereas the surface densities
match superfluid, saturated, solidified nuclear densities. The pulsars on the gray mass-radius profile match perfectly a surface density boundary condition pg = 8x 10'* g/cm® which

may suggest quark-gluon cores for those pulsars.



Thank you for listening.



