

Optical simulation of the DarkSide-20k Outer Veto

Beyond Standard Model: From Theory to Experiment, 6-9 November 2023

Dark Matter

on behalf of the DarkSide Collaboration

<u>Speaker: Taisiia Smirnova¹</u> Supervisor: Dr. Shawn Westerdale²

¹NRC Kurchatov Institute ²University of California, Riverside Optical simulation

Underground experiment

Liquid argon

Light yield

What is Dark Matter?

approximate (in order of magnitude), and meant to indicate general

considerations.

Laboratori Nazionali del **Gran Sasso (LNGS)**

Placement:

events

Under mountain peak Corno Grande, at an average depth of about 1400 m and at an altitude of about 1000 m above sea level.

Gran Sasso

Laboratory

National

Gran

DarkSide-20k

The DarkSide-20k (DS-20k) experiment seeks to **directly detect dark matter** in the form of weakly interacting massive particles (WIMPs). The designed DS-20k detector is a two phase time projection chamber (TPC) filled with 50 tons of underground liquid argon.

to kly ed on ind TPC

TPC Ti (or SS) vessel Top OP vPDU TPC Barrel Calibration Pipe Bottom OP Bottom OP

arXiv:2301.12970v1

Fig.2. Cross sections of the cryostat (left) and of the vessel containing the inner veto and TPC (right) of the DarkSide-20k detector

Outer Veto

Motivation:

Registration of background events from cosmogenic muons and related nuclearactive showers that can activate isotopes.

Physics potential:

- ⁸B solar neutrinos
- Supernova neutrinos

Fig.3. The **preliminary** schematic design DarkSide-20k with Membrane Cryostat and Stainless Steel Vessel ⁶

Comparison of the LY for different OV configurations on the SSVessel

Fig.5. The average value of the LY for different variations of the design of an OV on SSVessel

Adding PEN + Reflector to the surface of the SSVessel in order to increase the LY value

The first OV model by layers:

Preliminary Adding PEN + Reflector to the surface of the SSVessel

The first OV model by layers:

Table.1. The values of the LY for case 32 PDUs on SSVessel from *Fig.5.*

WLS \reflector	Lumirror	Tyvek
TPB on PDUs	12.92 ± 0.16	7.61 ± 0.15
PEN on PDUs	-	5.34 ± 0.08

The second OV model by layers:

Simulation's parameters: Cosmic muon, events 1000, LenLArVisAbs = 10 km, LenLArUVAbs = 10 m, 32 PDUs

> <u>Conclusion:</u> Additional PEN cover with a reflector **increases** the LY value

Cryostat 🔒 PEN	AAr PEN	R SSVessel R PEN	AAr PEN	R Cryostat
25 um	25 um	25 um	25 um	

Table.2. The values of the LY for case 32 PDUs on SSVessel

WLS \reflector	Lumirror	Tyvek	
TPB on PDUs	23.26 ± 0.19	9.76 ± 0.15	
PEN on PDUs	20.28 ± 0.17	7.67 ± 0.14	

Simulation's parameters: Cosmic muon, events 1000, LenLArVisAbs = 10 km, LenLArUVAbs = 10 m, 32 PDUs

Influence of LAr absorption lengths on the LY value

Preliminary

Simulation's parameters:

Cosmic muon, events 1000, 32 PDUs on SSVessel, PEN as WLS, Tyvek as reflector

Table.3. The values of the LY for different values of LAr absorption lengths

LenLArVisAbs*, km	LenLArUVAbs**, m	LY, $rac{p.e.}{MeV}$		The value of the LY increased by 1.16 times
10	10	$\textbf{7.67} \pm \textbf{0.14}$		2 times.
10	20	$\boldsymbol{8.92\pm0.17}$		When the LenLArVisAbs was decreased
1	20	$\textbf{8.51} \pm \textbf{0.11}$		by 10 times, the LY value decreased by 1.05
*LenLArVisAbs –				
of LAr in visible wavelength	**LenLArUVAbs – absorption length of LAr in UV wavelength			Conclusion: Compared to LenLArUVAbs, the LenLArVisAbs has less of an impact on the LY.

Preliminary

Remove Reflector + PEN from GAr

Fig.6. The schematic model DarkSide-20k without TPC: Cryostat, Reflector, PEN, GAr, AAr

WLS \reflector	Lumirror	Tyvek	
TPB on PDUs	26.57 ± 0.15	11.67 ± 0.15	
PEN on PDUs	22.37 ± 0.12	8.73 ± 0.12	

Motivation: to help with the argon recirculation

Remove PEN + Reflector from GAr

Simulation's parameters:

Cosmic muon, events 1000, LenLArVisAbs = 1 km , LenLArUVAbs=20 m, 32 PDUs on SSVessel

Fig.7. The schematic model DarkSide-20k without TPC: Cryostat, Reflector, PEN, GAr, AAr, EPS Surface

WLS \reflector	Lumirror	Tyvek	
TPB on PDUs	19.61 ± 0.19	10.02 ± 0.14	
PEN on PDUs	16.29 ± 0.17	7.49 ± 0.12	

Conclusion:

After removal, the LY decreased. This is due to the fact that more absorption processes began occur in GAr.

Preliminary

What will be if some PDUs will be place bottom and top on SSVessel?

For *Fig.6.* schematic model

Simulation's parameters:

Cosmic muon, veto yield 0.02, events 1000, LenLArVisAbs = 1 km , 3

LenLArUVAbs=20 m

32 PDUs: 6 on bottom, 6 on top, 20 on side

Table.5. The values of the LY

WLS\reflector	Lumirror	Tyvek	
TPB on PDUs	26.91 ± 0.16	11.15 ± 0.15	
PEN on PDUs	22.12 ± 0.10	9.09 ± 0.15	

The arrangement of PDUs on the top and bottom of SSVessel gives a slight increase in LY. Needs more testing.

The first step to build LY map for different OV configurations

Fig.8. The distribution of mean LY by coordinates XY in case all PDUs on side SSVessel.

Fig.9. The distribution of mean LY by coordinates XY in case PDUs on side and top/bottom SSVessel.

The first step to build LY map for different OV configurations

Fig.10. The **preliminary** LY map in case all PDUs on side SSVessel.

Conclusions:

- The LY was calculated for different types of reflector and WLS materials for cover for each PDU.
 - The LY value was compared between two models of OV with reflector+PEN layer and without them on SSVessel.
- The LY was calculated for different PDU placement options.
- The first step to build LY map for DAQ system has been taken.

To-Do List:

- □ To select reflector for Cryostat and SSVessel.
- □ To select the coordinates for the location of PDUs.
- Continue work to build LY map for DAQ system.

Thanks for your attention!

Research assistant

- +79057412570
- \bowtie

staisiya2019@gmail.com

Backups

Potential DarkSide-20k

Aalseth, C. E et.al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur.Phys.J.Plus, 133 (2018), 131. arXiv: 1707.08145

The comparison between reflectors

20

The calculation light yield

$$LY = \frac{N_{pe}/scale\,factor}{E_{dep}} \quad (1$$

LY – light yield N_{pe} – number of photo electrons *scale factor* – parameter for scaling the number of photons produced, to speed up the simulations E_{dep} – deposit energy

Influence of LAr absorption lengths on the LY value Preliminary

WLS on PDUs	Reflector	LenLArVisAbs, km	LenLArUVAbs, m	LY, $rac{p.e.}{MeV}$	Simulation's parameters: Cosmic muon, events 1000,	
TDD	Lumirror			23.26 ± 0.19	32 PDUs on SSVessel	
IPD	Tyvek	10	10	9.76 ± 0.15		
DEN	Lumirror	10	10	20.28 ± 0.17	<u>Conclusion:</u> The higher the	
PEN	Tyvek			7.67 ± 0.14	absorption lengths of	
TDD	Lumirror	10		27.92 ± 0.22	LAr, the higher LY	
IFD	Tyvek		10	20	11.78 ± 0.14	obtained
DEN	Lumirror		20	23.66 ± 0.21		
FLIN	Tyvek			8.92 ± 0.17		
тор	Lumirror			26.10 ± 0.16		
	Tyvek	1	20	11.51 ± 0.14		
PEN	Lumirror	±	20	22.04 ± 0.11		
F LIN	Tyvek			8.51 ± 0.11		

The first step to build LY map for different OV configurations

Fig.15. The 3D histogram of empty voxels

Comparison of the LY map for different particle simulations

Simulation parameters:

- electrons; ٠
- E=100 MeV; ٠
- 1000 events; •

Simulation parameters:

- optical photons;
- E=9.8 eV;
- 4000000 events;

Figure.. The efficiency vs Voxel ID

Influence of LAr absorption lengths on the LY value

Table The values of the LY for case 32 PDUs on SSVessel	Simulation's parameters: Cosmic muon, veto yield 0.02, events 1000,
WLS\reflectorLumirrorTyvekTPB on PDUs 23.26 ± 0.19 9.76 ± 0.15 PEN on PDUs 20.28 ± 0.17 7.67 ± 0.14	LenLArVisAbs = <mark>10 km</mark> , LenLArUVAbs=10 m
WLS\reflectorLumirrorTyvekTPB on PDUs 27.92 ± 0.22 11.78 ± 0.14 PEN on PDUs 23.66 ± 0.21 8.92 ± 0.17	LenLArVisAbs = <mark>10 km</mark> , LenLArUVAbs=20 m
WLS\reflectorLumirrorTyvekTPB on PDUs 26.10 ± 0.16 11.51 ± 0.14 PEN on PDUs 22.04 ± 0.11 8.51 ± 0.11	LenLArVisAbs = <mark>1 km</mark> , LenLArUVAbs=20 m