Dynamical Inflation Stimulated Cogenesis

Arnab Dasgupta

PITT-PACC, Department of Physics and Astronomy, University of Pittsburgh

February 7, 2023

Outline

1 Cosmic Inflation - Dwhy?

DHow?

DInflation Parameters

To Particle Physics Paradigm: Dynamical Inflation

m Matter Regnungtry

m Conclusion

Cosmic Inflation

O Flatness Boblem

O Solution via Inflation

2008.09639 Bai, Stolarski

m³inflaton
[11] Given a inflaton potential $V(\vec{p})$, we need to define the slow noll parameters $E_{v} = M_{Pl}^{2} \left(\frac{V_{\phi}}{V}\right)\Big|_{\phi=\phi_{i}} M_{v}(\phi) = M_{Pl}^{2} \left(\frac{V_{\phi\phi}}{V}\right)\Big|_{\phi=\phi_{i}} E_{v}^{2}(\phi) = M_{Pl}^{4} \left(\frac{V_{\phi\phi\rho}V_{\phi}}{V(\phi)}\right)\Big|_{\phi=\phi_{i}} M_{l}^{2}$ $s=$ in the slow-roll regime ϵ_v γ_v , ξ_v^2 << 1

Inflation parameters

$$
n_{s} = 1 - 6 \epsilon_{v} + 2 \gamma_{v} \approx 5 \text{calar spectral Index} = 0.5691 \pm 0.0041
$$

\n
$$
\gamma = 16 \epsilon_{v} \approx \text{Tensor to scalar amplitude} \quad 0.0067
$$

\n
$$
\alpha_{s} = 16 \epsilon_{v} \gamma_{v} - 24 \epsilon_{v}^{2} - 2 \epsilon_{v}^{2} \equiv \frac{d}{d} \eta_{s} \approx \text{Fuming of the scalar spectral index}
$$

\n
$$
= 0.0023 \pm 0.0063
$$

$$
A_{s} = \frac{1}{12\pi^{2}} \frac{V^{3}}{V^{2}}
$$
 8 = scalar amplitude = (2.189 ± 0.053)×10⁹
and the number of e-foldings before the infhahon ends

$$
N_{e} \approx \int_{\phi_{e}}^{\phi_{i}} \frac{V_{\phi}}{V^{'\phi}} d\phi = 55-60
$$

2008.09639 Bai, Stolarski

Small field Roblem

 $V(\phi) = \lambda \left\{ \phi^4 \left[ln(\phi/f) - 1/4 \right] + f^4/4 \right\}$

 for $f < M_{PL}$ \Rightarrow Ne $\sim f^{4}/\phi_{i}^{2}$ $G_V \sim f^9/N_e^3$ & $\gamma_{\nu} \sim V/e$ $C < \gamma_V$ $m_s \sim 1+2\gamma_V$

 \blacksquare To have $|V_{,pp}| \approx o$ at some field point close to the initial inflation field value,

To realize a viable small-field infation potential with an inflection point one has $V(\phi) = \frac{1}{4} \lambda(\phi) \phi^4 + V_0$

De first and second derivative $V'(p) = (\lambda + \frac{1}{4}F_{\lambda})p^3$ $V''(\phi) = \frac{1}{4} (12 \lambda + 7\beta_{\lambda} + \beta_{\lambda}^{2})$ theory and thus ignored

Particle Physics Paradigm 2008.09639 Bai, Stolarski De Now, the extrema of the potential $\lambda(\phi_{ext}) = -\frac{1}{4} \beta_{\lambda}(\phi_{ext}) - \frac{\nu(\phi)}{2} = (\lambda + \frac{1}{4} \beta_{\lambda}) \phi^3$ & the inflection points pinf $\lambda(\psi_{inf}) \approx -\frac{7}{12} \beta_{\lambda}(\psi_{inf}) - \frac{1}{2} \nu''(\phi) \approx \frac{1}{4} (12 \lambda + 7\beta_{\lambda})$ With only scalar field, $\beta_3 \sim \frac{1}{16\pi^2} x^2$ the above conditions are not possible However, more complicated models where other couplings are gettien $P_{\lambda} \sim \frac{1}{16\pi^2} (g^4 + g^2 \lambda + \lambda^2)$

 $t = ln(\phi/\phi_o)$

Particle Physics Paradigm 2008.09639 Bai, Stolarski M Feild theoretic Realization Taking SULNe Jange theory $d=\frac{1}{4}G^{\mu\nu}G^{\alpha}_{\mu\nu} + (D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) + \vec{i}\times\vec{\partial}\times +\vec{i}\Psi\vec{\psi} + \sum_{i=N_{z}\kappa^{+1}}^{N\nu}M\vec{\psi}_{i}\psi_{i}$ $-\frac{\lambda}{4}(\Phi^{\dagger}\Phi)^{2}-(\Phi^{\dagger}\Psi)\chi+h.c.)$ $K = \frac{1}{16\pi^2}$ $\beta_g = -Kg^3(\frac{11}{3}N_c - \frac{1}{6} - \frac{2nf}{3})$ β y = κ $\left(\frac{3}{5}$ y y ty + y to $(\frac{y}{y})$ -3 $\frac{N_c^2}{2N_c}$ g^2 Y) $\beta_{\lambda} = \kappa \left(\frac{3(N_c-1)(N_c^2+2N_c-2)}{4N_c^2}g^4 - 2ts(\gamma^{\dagger}\gamma\gamma^{\dagger}\gamma) - 6\frac{(N_c^2-1)}{N_c}\lambda g^2 + 4\lambda ts(\gamma^{\dagger}\gamma) \right)$ $+4(N_c+4)\lambda^2)$

Particle Physics Paradigm 2008.09639 Bai, Stolarski Feild theoretic Realization W $V(\phi) = -\frac{a}{4}\left(1 + b \ln^2(\frac{\phi}{\phi_n}) + c \ln^2(\frac{\phi}{M})\theta(\phi - M)\right)$

Baryon Asymmetry of the Universe

® The Standard Model does not explain the present asymmetry.

1. The CP violation coming from
Jarlskog invarient is of the order 10. 2. The experimental lower bound on the Higgs mass implies the transition is not strongly first order.

 \odot The observed BAU is often quoted in terms of baryon to photon ratio

$$
M_{B} = \frac{m_{B} - m_{B}}{m_{\gamma}} = 6.04 \pm 0.08 \times 10^{-10}
$$

Kinds of Mechanism in
generating Asymmetry

@ Baryogenesis from Decay/Scattering @ Baryogenesis from Electroweak Phase Transitions O Spontaneous Baryogenesis 0... (Affleck-Dine, Gravitational Baryogenesis, etc.)

Bakharov's Conditions

@ The three basic ingredients necessary to generate a net
baryon asymmetry from an initially baryons symmetric Universe (Sakharov 1967): 1) Baryon Number (B) violation X-> Y+B 2) C and CP violation $\Gamma(X\rightarrow Y+B)$ \neq $\Gamma(\bar{X}\rightarrow Y+\bar{B})$ 3) Deperature from thermal Equilibrium.

CP violation from the Amplitude

Now, in order to get a mon-gero CP violation we start need at-least two distinct amplitude for a particular process

In order to understand the above claim we start with the amplitude of a B -violating process $(x \rightarrow b)$

 $M = (e_1 A_1 + e_2 A_2) \overline{\hat{f}}$ = \rightarrow spinor wave function Similarly, for anti-particle $P_{1}y = (e_{1}^{*}d_{1} + e_{2}^{*}d_{2})f_{1}^{*}$

The difference between the two processes comes out to be

 $8 = 4Im[C_1^*e_2]Im[A_1^*A_2]|f|^{2}$ Purely from coupling

Purely from coupling

O Now, originally the imaginary part comprises of 1-loop =) Which was due to the fact it was a 2-body decay

But if we consider a 2-2 process or a 3-body decay the imaginary part comes from the imaginary part of the amplitude.

o The particle content is given by

Model

 $\mathscr{A} \supset \left(\sum_{i=1}^{8} y_i \overline{\psi} \overline{\Phi} \chi + \sum_{i=9}^{16} y_i \overline{\Psi} \overline{\Phi} \chi + \sum_{i=2}^{N_{\text{HT}}} M \overline{\Psi}_{iL} \Psi_{iR} + h.c. \right) - \frac{1}{4} G^{\text{adv}}_{\text{inv}}$ $+\frac{\lambda_{B}}{4}|\Phi|^{4}+\frac{\lambda_{H}}{4}||H|^{4}+\lambda_{BH}|\Phi|^{2}||H|^{2}$ $+(1)$
 $+(1)$ $\frac{1}{2}$ $\overline{L}_{\alpha}H\chi_{i\overline{k}} + (1)$ $\chi_{i\overline{k}}$ $\overline{L}_{\alpha}H\chi_{i\overline{k}} + \frac{1}{2}M_{L}\overline{\chi_{i}^{c}}\chi_{l} + \frac{1}{2}M_{R}\overline{\chi_{i}^{c}}\chi_{l} + h.c.$

Model

 $\mathscr{D}d\supset\left(\sum_{i=1}^{8}\frac{1}{d_{i}}\overline{\psi}\overline{\Phi}\chi+\sum_{i=9}^{16}\frac{1}{d_{i}}\overline{\Psi}\overline{\Phi}\chi+\sum_{i=2}^{N_{\textrm{PT}}}M\overline{\Psi_{i_{L}}}\Psi_{i_{R}}+h.c.\right)\quad -\quad-\int\limits_{\overline{q}}\zeta_{1}^{a_{\textrm{MV}}}G^{a_{\textrm{UV}}}$ $+ \frac{\lambda \Phi}{4} |\Phi|^{4} + \frac{\lambda_{H}}{4} |H|^{4} + \lambda_{\Phi H} |\Phi|^{2} |H|^{2}$ $+(1)$ $\overline{C_{\alpha i}}$ $\overline{L_{\alpha}}$ $\overline{H} \chi_{iR} + (Y_L)_{x_i}$ $\overline{L^c_{\alpha}}$ $H \chi_{iL} + \frac{1}{2} M_L$ $\overline{Y_L^c}$ $Y_L + \frac{1}{2} M_R$ $\overline{Y_R^c}$ $Y_R + h.c$ \Rightarrow Inflation

Model

 $\mathbb{D}d\supset\left(\sum_{i=1}^{8}\frac{1}{d_{i}}\overline{\psi}\overline{\Phi}\chi+\sum_{i=9}^{16}\frac{1}{d_{i}}\overline{\Psi}\widetilde{\Phi}\chi+\sum_{i=2}^{N_{\phi}+1}M\overline{\Psi_{i_{L}}}\Psi_{i_{R}}+h.c.\right)\quad -\quad-\int\limits_{q}\mathrm{G}^{AV}G_{MV}^{q}$ $+ \frac{\lambda \Phi}{4} |\Phi|^4 + \frac{\lambda_H}{4} |H|^{4} + \lambda_{\Phi H} |\Phi|^{2} |H|^{2}$ $+(1)$ $\overline{C_{\alpha i}}$ $\overline{L_{\alpha}}$ $\overline{H} \chi_{iR} + (1)$ $\overline{C_{\alpha}}$ $\overline{H} \chi_{iL} + \frac{1}{2} M_L$ $\overline{Y_L^c}$ $\overline{Y_L} + \frac{1}{2} M_R$ $\overline{Y_R^c}$ $\overline{Y_R} + h.c$ \Rightarrow Inflation => Freeze-in Dark Matter

Model

 $\mathscr{D} \mathscr{L} \supset \left(\sum_{i=1}^{\infty} y_i \overline{\psi} \overline{\Phi} \chi + \sum_{i=2}^{16} y_i \overline{\psi} \overline{\Phi} \chi + \sum_{i=2}^{N_{\phi}+1} M \overline{\psi_i} \psi_{iR} + h.c. \right) - \frac{1}{4} G^{\mu\nu} G^{\alpha}_{\mu\nu}$ $+ \frac{\lambda_{B}}{4} |\Phi|^{4} + \frac{\lambda_{H}}{4} |HH^{4} + \lambda_{BH} |H|^{2}$ $+(1)$ $\frac{1}{2}$ $\overline{L}_{\alpha}H\chi_{iR} + (1)$ $\chi_{i}H\overline{L}_{\alpha}H\chi_{iL} + \frac{1}{2}\mu_{L}\overline{\chi_{i}^{c}}\chi_{L} + \frac{1}{2}\mu_{R}\overline{\chi_{iR}^{c}}\chi_{iR} + h.c.$ \Rightarrow Inflation => Freeze-in Dark Matter =>Inverse See-Saw Neutrino Mass A Leptogenesis

m Inflation

D The potential

 $V(\phi) = -\frac{a}{4}(1+b \log^{2}(\phi/\phi_{0})) + c \log^{2}(\phi/\mu) \theta(\phi - M)) + aV_{0}$

 1.2

Ø Freeze-in Dark Matter

N Ymnet 4

T>TEWSB

 $T < T_{EWSB}$ $47 < 107$
 $H = -\frac{1}{2}$

Inverse See-Saw Neutrino Mass & Leptogenesis

El Inverse See-saw Neutrino Mass

Mass Matrix
 $M_f = \begin{pmatrix} 0 & m'_p & 0 \\ m_p & 0 & N_x - \frac{1}{2} - \frac{3}{2} \pi \sqrt{6} \\ m_p & 0 & N_x - \frac{1}{2} - \frac{3}{2} \pi \sqrt{6} \\ 0 & M_x & \frac{1}{2} - \frac{3}{2} \pi \sqrt{6} \mu_R \end{pmatrix}$ Mass Matrix

 M_{ν} \approx $\frac{m^{2}\mu}{M^{2}}$

Inverse See-Saw Neutrino Mass & Leptogenesis

E Leptogenesis

 M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} M_{7}

Boltzmann Equation D The coupled Boltzmann Equation for the reheating $S_p^2 = -3H_{S_p} - (\frac{1}{\varphi_{MW}} + \frac{1}{\varphi_{V}}) f_p$ $\hat{f}_{N} = -(3 + \theta(3T - M_{N}))\mathcal{H}f_{N} + P_{P \rightarrow NN}f_{P} - I_{N}f_{N}$ $\tilde{n}_{B-L} = 37/n_{B-L} + \epsilon \frac{r}{\epsilon} \left(\frac{r}{E_N} \left(\frac{f_N}{f_N} - \frac{f^2}{f_N} \right) - \frac{r}{L_0} \frac{r}{n_{B-L}} \right)$ $S_R = -4H_{R} + I_{N}S_{N}$ $\ddot{S}_{\varphi} = -(3+ \theta(3T-M_{\varphi}))\mathcal{H}\dot{S}_{\varphi} + \hat{A} \frac{\langle \sigma v \rangle}{\langle \vec{E}_{N} \rangle} \dot{S}_{N}^2 + \vec{I}_{\varphi \rightarrow \varphi \varphi} \dot{S}_{\varphi}^2$

Boit marin Crustion a Now re-writing the above coupled differential equation $\tilde{S_p} = S_p a^3 g^3 \tilde{S} - S_w a^3 \tilde{S} - N_{B-L} = N_{B-L} a^3 g^3 \tilde{S}_w = S_p a^3 g^3 \tilde{S}_R = S_R a^4$ $25 = a/a_s$; $(5f) = f_f^{(9}/m_f^{(9)})$; $T = \left(\frac{30 \text{ } S_R}{\pi^2} \right)^{1/4}$ $H = \left[\frac{8\pi}{3 M_{Pl}^2} \frac{\tilde{J}_{p} a_{I} \tilde{X} + \tilde{J}_{N} a_{I} \tilde{X} + \tilde{J}_{R}}{a_{I}^4 \tilde{Y}^4}\right]^{1/2}$

Boltzmann Equation

og Re-write the above bottgmanne equation

 $\hat{f}_{\phi}^{\prime}=\frac{1}{715}\left(\frac{P_{\phi\gamma NN}+P_{\phi\gamma\gamma}}{P_{\phi\gamma\gamma}}\right)\hat{f}_{\phi}$

 $\tilde{f}_{N} = \frac{\theta(3T-M_{N})}{5} \tilde{f}_{N} + \frac{1}{H_{5}^{2}} (\tilde{f}_{P-N_{N}} \tilde{f}_{P} - \tilde{f}_{N} \tilde{f}_{N})$

 $\widetilde{N}_{B-L} = \frac{1}{H\zeta}\left(\frac{\epsilon}{\epsilon_0}\frac{\Gamma_{N}}{\epsilon_0}\left(\frac{\rho_{N}}{\epsilon_0}-\frac{\rho_{N}^2}{\epsilon_0}\right)-\frac{\Gamma_{D}}{\epsilon_0}\frac{\widetilde{N}_{B-L}}{\gamma_{B-L}}\right)$

 $\tilde{f}_{R} = \frac{1}{2} \tilde{f}_{N}$

 $\hat{J}'_{\varphi} = -\frac{\partial(3T-M_{\varphi})}{\xi} \tilde{S}_{\varphi} + \frac{1}{\mu \xi} \left(\frac{2}{(\tilde{c}_{N})\xi^{3}} \tilde{S}_{N}^{2} + \tilde{I}_{\varphi \to \varphi \varphi} \tilde{S}_{\varphi} \right)$

Conclusion

We have shown a minimal extension of Standard Model (SM) wherein we address

Diflation (Small field)

ED Dark Matter

Neutrino Mass & Leptogenesis

In this minimal setup the only two parameters are a) Number of DM Candidate 6) Mass of the DM

Thank You

Backup slides

Particle Physics Paradigm 2008.09639 D Feild theoretic Realization Taking SULNe) gange theory $d=\frac{1}{4}G^{\mu\nu}G^{\alpha}_{\mu\nu}+(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)+\mathcal{I}\times\mathcal{J}\times+\mathcal{I}\Psi\mathcal{V} -\sum_{i=N_{x}+1}^{N_{\mu\nu}}M\Psi_{i}\Psi_{i}$ $-\frac{\lambda}{4}(\Phi^{\dagger}\Phi)^2 - (\Phi^{\dagger}\Psi)\chi + h.c.)$ $\beta_g = -\kappa g^3 \left(\frac{11}{3} N_c - \frac{1}{6} - \frac{2 n_f}{3} \right)$ $K = \frac{1}{16\pi^2}$ β y = κ ($\frac{3}{5}$ y y ty + y to (y ty) -3 $\frac{N_c^2 - 1}{2N_c}$ g^2 Y) $\beta_{\lambda} = \kappa \left(\frac{3(\kappa_{c}-1)(\kappa_{c}^{2}+2\kappa_{c}-2)}{4\kappa_{c}^{2}}g^{4} - 2ts(\gamma^{2}\gamma\gamma^{2}\gamma) - 6\frac{(\kappa_{c}^{2}-1)}{\kappa_{c}}\lambda g^{2} + 4\lambda ts(\gamma^{2}\gamma) \right)$ $+4(N_c+4)\lambda^2)$

$$
\mathcal{D} \text{ Assuming } \mathcal{V}^{4} = t_{\gamma} (\gamma^{1} \gamma \gamma^{1} \gamma) = 3 \frac{(N_{c}-1) (N_{c}^{2} + 2N_{c}-2)}{8 N_{c}^{2}} g^{4}
$$
\n
$$
g(t) = g_{0} - K g_{0}^{3} \left[\left(\frac{11}{3} N_{c} - \frac{2}{3} N_{2R} - \frac{1}{6} \right) t + \frac{2}{3} (N_{2R} - N_{\omega}) (t - t_{\gamma}) \partial(t - t_{\gamma}) \right]
$$
\n
$$
\gamma(t) = V_{0} + K t \left[\frac{2}{3} V_{0} V_{0}^{T} \gamma_{0} + V_{0} t (V_{0}^{T} \gamma_{0}) - 3 \frac{N_{c}^{2} - 1}{2 N_{c}} g_{0}^{T} V_{0} \right]
$$
\n
$$
\gamma(t) = \gamma_{0} - K^{2} t^{2} \left[g_{0}^{4} \frac{8 N_{c} - 1}{2 N_{c}^{2}} \left(\frac{11}{3} N_{c} - \frac{2}{3} N_{2R} - \frac{1}{6} \right) + 4 t_{\gamma} (V_{0}^{T} \gamma_{0} V_{0}^{T} \gamma_{0}) t_{0} (V_{0}^{T} \gamma_{0}) \right]
$$
\n
$$
+ 6 t_{\gamma} (V_{0}^{T} \gamma_{0} V_{0}^{T} \gamma_{0} V_{0}^{T} \gamma_{0}) - 6 \frac{N_{c}^{2} - 1}{N_{c}} g_{0}^{T} t_{\gamma} (V_{0}^{T} \gamma_{0} V_{0}^{T} \gamma_{0}) \right]
$$
\n
$$
+ \frac{(N_{c} - 1) (N_{c}^{2} + 2N_{c} - 2)}{N_{c}} K^{2} g_{0}^{6} (N_{\omega} - N_{\gamma} \gamma_{c}) (t - t_{\gamma} - 1) \partial(t - t_{\gamma} - 1)
$$

Particle Physics Paradigm 2008.09639 $\textcircled{1} \quad \textcircled{1} \quad \textcircled{2} \quad \textcircled{3} \quad \textcircled{4} \quad \textcircled{5} \quad \textcircled{5} \quad \textcircled{6} \quad \textcircled{6} \quad \textcircled{7} \quad \textcircled{7} \quad \textcircled{7} \quad \textcircled{7} \quad \textcircled{8} \quad \textcircled$ + 4 ts (ψ^{\dagger} ψ^{\dagger} ψ^{\dagger} ψ) ts (ψ^{\dagger} ψ) + 6 ts (ψ^{\dagger} $\psi^{}_{o}$ ψ^{\dagger} $\psi^{}_{o}$ $\psi^{}_{o}$ -6 $\frac{N_c-1}{N_c}$ g^2 bs $(\gamma_o^{\dagger} \gamma_o \gamma_o^{\dagger} \gamma_o)$] + (N=1) (N²+2Nc⁻²⁾ $K^{2}g_{o}^{6}$ (N_W-N_{IR}) (t-t_M)² Θ (t-tm) + V₀
N₂ $= \frac{-a}{4} \phi^4 \left(1 + b \ln^2 \left(\frac{\phi}{\phi_0}\right) - c \ln^2 \left(\frac{\phi}{M}\right) \theta(\phi - M) \right) + a \widetilde{V}_0$

19 Imposing restrictions on this potential 1) The potential does not develop any local minima so that $V'(\phi) < \circ$ for $\phi < \phi_{min}$ 2) Some field value $\phi \sim \phi_o < M$ the potential develops an

inflection point: V"(p)=0

b < 16 (V'(p) co for Ø<pmin) \Rightarrow

b > 144/25 (existence of inflection points
~5.7 for $p < m$)

of The global minimum of the potential prin

 $ln\left(\frac{\rho_{min}}{M}\right)$: $\frac{1}{4} + \frac{46ln(M/\phi_0) + \sqrt{(c-b)(16+c-b)+16bc}ln^2(M/\phi_0)}{4}$ $4(6-6)$ for Prin > M