Swampland program, extra dimensions and susy breaking

I. Antoniadis

LPTHE, Sorbonne University, CNRS, Paris and Simons Center for Geometry and Physics, Stony Brook, NY

Beyond Standard Model: From Theory to Experiment (BSM-2023)

Hurgada, Egypt, November 6-9

Not all effective field theories can consistently coupled to gravity

- anomaly cancellation is not sufficient
- consistent ultraviolet completion can bring non-trivial constraints

those which do not, form the 'swampland'

criteria ⇒ conjectures

supported by arguments based on string theory and black-hole physics

Some well established examples:

- No exact global symmetries in Nature
- Weak Gravity Conjecture (WGC): gravity is the weakest force
 - \Rightarrow minimal non-trivial charge: $q \ge m$ in Planck units $8\pi G = \kappa^2 = 1$

Arkani-Hamed, Motl, Nicolis, Vafa '06

Distance/duality conjecture

At large distance in field space $\phi \Rightarrow$ tower of exponentially light states $m \sim e^{-\alpha \phi}$ with $\alpha \sim \mathcal{O}(1)$ parameter in Planck units

• provides a weakly coupled dual description up to the species scale

$$M_* = M_P/\sqrt{N}$$

- tower can be either
 - 1 a Kaluza-Klein tower (decompactification of d extra dimensions)

$$M_* = M_P^{(4+d)} = (m^d M_P^2)^{1/(d+2)}$$
 ; $m \sim 1/R$, $\phi = \ln R$

2 a tower of string excitations

$$M_* = m \sim$$
 the associated string scale $= g_s M_P$; $\phi = -\ln g_s$

emergent string conjecture

Lee-Lerche-Weigand '19

Dvali '07

smallness of physical parameters: large distance corner of lanscape?

Theorem:

assuming a light gravitino (or gaugino) present in the string spectrum

$$M_{3/2} << M_P$$

 $\Rightarrow \exists$ a tower of states with the same quantum numbers and masses

$$M_k = (2Nk+1)M_{3/2};$$
 $k = 1, 2, ...;$ N integer (not too large)

Proof:

- 2D free-fermionic constructions $\gg N \lesssim 10$
- 2D bosonic lattices $\gg N \lesssim 10^3$
- \Rightarrow compactification scale $m=\lambda_{3/2}^{-1}\,M_{3/2}$ with $\lambda_{3/2}=1/2N$

Dark dimension proposal for the dark energy

$$m=\lambda^{-1}\Lambda^a$$
 $(M_P=1)$; $1/4 \leq a \leq 1/2$ Montero-Vafa-Valenzuela '22
 • distance $\phi=-\ln\Lambda$ Lust-Palti-Vafa '19
 • $a \leq 1/2$: unitarity bound $m_{\mathrm{spin}-2}^2 \geq 2H^2 \sim \Lambda$ Higuchi '87
 • $a \geq 1/4$: estimate of 1-loop contribution $\Lambda \gtrsim m^4$ $R \lesssim 30 \mu\mathrm{m}$ observations: $\Lambda \sim 10^{-120}$ and $m \gtrsim 0.01$ eV (Newton's law) $\Rightarrow a=1/4$ astrophysical constraints $\Rightarrow d=1$ extra dimension \Rightarrow species scale (5d Planck mass) $M_* \simeq \lambda^{-1/3} \, 10^8$ GeV $10^{-4} \lesssim \lambda \lesssim 10^{-1}$

Obviously such a low m cannot correspond to a string tower

Gravitino Mass Conjecture [4]

Cribiori-Lust-Scalisi, Castellano-Font-Herraez-Ibanez '21

$$m_2 = \lambda_{3/2}^{-1} M_{3/2}^n \quad (M_P = 1) \quad n > 0$$

4d supergravity in flat space: $M_{3/2} = \varkappa M_{\mathrm{SUSY}}^2 \leftarrow \text{VEV}$ of F (or D) auxiliary

Low energy SUSY (linear or non-linear) $\Rightarrow M_{3/2} < M_{\mathrm{SUSY}} \leq M_*$

However Standard Model soft terms depend on the mediation mechanism

- ullet gravity mediation: $M_{
 m soft} \sim M_{
 m SUSY}^2 \sim M_{3/2}$
- gauge mediation: $M_{
 m soft} \sim \alpha M_{
 m SUSY}^2/M_{
 m mess} \leftarrow {
 m messenger \ mass} \gtrsim M_{
 m SUSY}$ $\sim 1000 \ {
 m factor}$

Combine GMC with Dark Dimension proposal ⇒ two possibilities:

- one KK tower: $m_2 = m$
- 2 two different towers: $m=m_1$ for DE and m_2 for SUSY breaking

 Anchordoqui-I.A.-Cribiori-Lust-Scalisi '23

scenario 1: single KK tower

$$\Lambda = (\lambda/\lambda_{3/2})^4 M_{3/2}^{4n}$$

identified as leading non-vanishing power of $\mathrm{Str}\mathcal{M}^{2k} \Rightarrow 2n$ is integer ≥ 1

requiring $M_{\rm SUSY} \leq M_* \Rightarrow n \leq 2$ while $M_{\rm SUSY} \gtrsim 10$ TeV $\Rightarrow n \geq 1$

n	$M_{3/2} imes (\lambda_{3/2})^{-\frac{1}{n}} \; GeV^{-1}$	$M_{ m SUSY} imes arkappa^{rac{1}{2}} (\lambda_{3/2})^{-rac{1}{2n}} \; {\sf GeV}^{-1}$
1	2.5×10^{-9}	$7.8 imes 10^4$
3/2	$2.5 imes 10^{0}$	$2.5 imes 10^9$
2	7.8×10^{4}	4.4×10^{11}

n = 1 requires gauge mediation

while n=2 (with tuning of $\varkappa(\lambda_{3/2})^{-\frac{1}{2n}}$) gravity mediation also n=3/2

scenario 2: two KK towers

Dark Radius $R_1=\lambda \Lambda^{-1/4}$; SUSY Radius $R_2=1/m_2=\lambda_{3/2}M_{3/2}^{-n}$ species scale =(5+p)-dim Planck mass $M_*=M_P/\sqrt{N} \text{ with } N=N_1N_2=R_1R_2M_*^{1+p} \text{ for } p \text{ extra SUSY dims}$ $\Rightarrow M_*=(m_1m_2^p)^{1/(3+p)} \text{ while } m_2=(\varkappa^n/\lambda_{3/2})\,M_{\mathrm{SUSY}}^{2n}$

experimental bounds: $m_2 \gtrsim 10$ MeV (supernova), $M_{
m SUSY} \gtrsim 10$ TeV (LHC)

- n=1/2: $m_2\sim M_{\rm SUSY} \Rightarrow M_{3/2}\gtrsim 0.1$ eV for $M_{\rm SUSY}=10$ TeV $\Rightarrow M_*\sim 10^{7-8}$ GeV $(1\leq p\leq 5)$
- n > 1 and n = 1, p > 1: excluded
- n=1=p: $M_{\rm SUSY}\sim M_*\simeq 10^7$ GeV, $m_2\sim 10$ MeV, $M_{3/2}\simeq \lambda_{3/2}m_2$ tuning $\lambda_{3/2}/\varkappa\sim \mathcal{O}(10^{-5})$

More physics implications of the dark dimension

• natural explanation of neutrino masses introducing ν_R in the bulk recent analysis of ν -oscillation data with 3 bulk neutrinos \Rightarrow

$$m \gtrsim 2.5 \text{ eV}$$
 $(R \lesssim 0.4 \,\mu\text{m})$

Forero-Giunti-Ternes-Tyagi '22

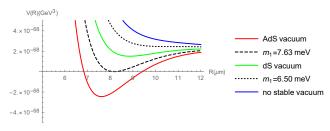
$$\Rightarrow \lambda \lesssim 10^{-3}$$
 and $M_* \sim 10^9$ GeV

the bound can be relaxed in the presence of bulk ν_R -neutrino masses

Lukas-Ramond-Romanino-Ross '00, Carena-Li-Machado²-Wagner '17

support on Dirac neutrinos by the sharpened WGC

non-SUSY AdS vacua (flux supported) are unstable Ooguri-Vafa '16 avoid 3d AdS vacuum of the Standard Model with Majorana neutrinos radion stabilisation: 4d cosmological constant versus Casimir energy


 \Rightarrow Dirac neutrinos with a lightest mass \lesssim few meV

Ibanez, Martin-Lozano, Valenzuela '17

or a light gravitino in the meV range

Anchordoqui-I.A.-Cunat '23

Arkani-Hamed, Dubovsky, Nicolis, Villadoro '07

More physics implications of the dark dimension

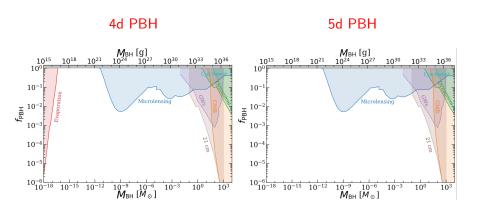
- 3 candidates of dark matter:
 - 5D primordial black holes in the mass range $10^{15}-10^{21}{\rm g}$ with Schwarzschild radius in the range $10^{-4}-10^{-2}~\mu{\rm m}$

Anchordoqui-I.A.-Lust '22

f 2 KK-gravitons of decreasing mass due to internal decays \Rightarrow Dynamical DM for small violation of KK-momentum conservation [14]

from \sim MeV at matter/radiation equality ($T\sim$ eV) to \sim 50 keV today

Gonzalo-Montero-Obied-Vafa '22


possible equivalence between the two

Anchordoqui-I.A.-Lust '22

ultralight radion as a fuzzy dark matter

Anchordoqui-I.A.-Lust '23

Primordial Black Holes as Dark Matter

5D BHs live longer than 4D BHs of the same mass

Fuzzy dark matter & the Pulsar Timing Array signal

Anchordoqui-IA-Lust '23

FDM: ultralight bosonic particles with wave-like behavior at galactic scales

$$\lambda_{\mathrm{dB}} \equiv rac{2\pi}{mv} = 4.8 \ \mathrm{kpc} \left(rac{10^{-23} \ \mathrm{eV}}{m}
ight) \left(rac{250 \ \mathrm{km/s}}{v}
ight)$$

⇒ at larger distances FDM behaves as CDM

PTA signal: time arrival stochastic sinusoidal oscillations

of amplitude $\mathcal{A} \sim 10^{-15}$ at frequency $f \sim$ a few nHz

Similar signal can be produced by FDM

of mass $m \sim 10^{-23}$ eV using $ho_{\rm DM} \sim 0.4~{
m GeV/cm}^3$

oscillations generate fluctuations in metric perturbations

⇒ (quasi) stabilised radion as fuzzy dark matter

Dark dimension radion as fuzzy dark matter

- radion mass: $m_{\phi} \sim \sqrt{V_{\phi\phi}} \sim \sqrt{\Lambda_4}/M_p$ $f = \omega/(2\pi) = m/\pi$
- radion production: (inflaton decay) via unstable KK gravitons [11]

5D coupling Mohapatra-Nussinov-Perez Lorenzana '03
$$\Gamma_{\text{tot}}^{I} = \sum_{l' < l} \Gamma_{Rl'}^{I} = \frac{1}{8\pi} \frac{\lambda^{2}}{m_{l}^{2}} \frac{1}{(2\pi R M_{*})^{2}} \sum_{l' < l} (m_{l} - m_{l'}) \langle \varphi_{l-l'} \rangle^{2}$$

$$= \frac{\lambda^{2}}{64\pi^{3}} \left(m_{\text{KK}} + \frac{m_{\text{KK}}^{2}}{m_{l}} \right) \left(\frac{\langle \varphi \rangle}{M_{*}} \right)^{2}$$

$$\sim 10^{13} \text{-} 10^{2} \, \text{s}^{-1} \quad \text{for } \frac{\langle \varphi \rangle}{M_{*}} \sim 1 \text{-} 10^{-5} \text{ and } m_{KK} = 10 \, \text{eV}$$

 \Rightarrow (KK-tower \rightarrow radion) well before the QCD phase transition ($\sim 20 \mu s$)

suppress radion coupling to matter: add a localised kinetic term

$$\delta S_{
m radion}^{
m localised} = \zeta \int [d^4x] \left(rac{\partial R}{R}
ight)^2$$
 $\zeta: {\sf VEV} \ {\sf of a \ brane \ field}$ also Albrecht-Burgess-Ravndal-Skordis '01

I. Antoniadis (BSM-2023)

Dark Dimension Radion stabilization and inflation

If 4d inflation occurs with fixed DD radius ⇒

(Higuchi bound)
$$H_I \lesssim m \sim {
m eV} \gg M_I \lesssim 100 {
m GeV}$$

Inflation scale
$$M_I = \Lambda_I^{1/4} \simeq \sqrt{M_P H_I}$$

Interesting possibility: the extra dimension expands with time

$$R_0 \sim 1/M_*$$
 to $R \sim \mu \text{m}$ requires \sim 40 efolds! Anchordoqui-I.A.-Lust '22

$$ds_5^2 = a_5^2(-d\tau^2 + d\vec{x}^2 + R_0^2 dy^2)$$
 R_0 : initial size prior to inflation
$$= \frac{ds_4^2}{R} + R^2 dy^2 \; ; \quad ds_4^2 = a^2(-d\tau^2 + d\vec{x}^2) \; \Rightarrow a^2 = R^3$$

After 5d inflation of N=40-efolds $\Rightarrow 60$ e-folds in 4d with $a=e^{3N/2}$

Large extra dimensions from inflation in higher dimensions

Anchordogui-IA '23

Dark Dimension hierarchy from inflation

Inflaton: 5D field φ with a coupling to the brane to produce SM matter

e.g. via a 'Yukawa' coupling suppressed by the bulk volume $y\sim 1/(RM_*)^{1/2}$

Its decay to KK gravitons should be suppressed to ensure $\Delta \textit{N}_{\rm eff} < 0.2$

$$\left(\Gamma_{\mathrm{SM}}^{\varphi} \sim \frac{m}{M_{*}} m_{\varphi}\right) > \left(\Gamma_{\mathrm{grav}}^{\varphi} \sim \frac{m_{\varphi}^{4}}{M_{*}^{3}}\right) \Rightarrow m_{\varphi} < 1 \,\mathrm{TeV}$$

5D cosmological constant at the minimum of the inflaton potential

⇒ runaway radion potential:

$$V_0 \sim \frac{\Lambda_5^{
m min}}{R}$$
; $(\Lambda_5^{
m min})^{1/5} \lesssim 100 \, {
m GeV}$ (Higuchi bound)

canonically normalised radion: $\phi = \sqrt{3/2} \ln(R/r)$ $r \equiv \langle R \rangle_{\rm end\ of\ inflation}$

 \Rightarrow exponential quintessence-like form $V_0 \sim e^{-lpha\phi}$ with $lpha \simeq 0.8$

just at the allowed upper bound: Barreiro-Copeland-Nunes '00

Conclusions

smallness of some physical parameters might signal
a large distance corner in the string landscape of vacua
such parameters can be the scales of dark energy and SUSY breaking
mesoscopic dark dimension proposal: interesting phenomenology
neutrino masses, dark matter, cosmology, SUSY breaking

- minimal scenario for SUSY breaking very attractive $M_{3/2}\sim {\rm eV},~M_{\rm SUSY}\sim {\rm ten's}$ of TeV, require gauge mediation
- 2 more cases are possible: $M_{3/2} \sim (1/R)^{1/n}$ for n=3/2,2 $M_{\rm SUSY} \sim M_* \sim 10^9$ GeV with $M_{3/2} \sim \mathcal{O}(\text{GeV-TeV})$

Large extra dimensions from higher dim inflation

• connect the weakness of gravity to the size of the observable universe