'Relativistic' Quantum Theories from the

Proper Symmetry Theoretical Formulation

— invited talk at BSM 2023

OTTO C. W. KONG

— Nat'l Central U, Taiwan

Lorentz Covariant Quantum Physics:-

- Schrödinger wavefunction $\phi(x^{\mu})$
- basic operators x_{μ} and $-i\hbar\partial_{\mu}$
- abstract operators as Minkowski four-vectors
- $-\hat{X}_i \longrightarrow \hat{X}_{\mu}$ and $\hat{P}_i \longrightarrow \hat{P}_{\mu}$
- $[\hat{X}_{\mu},\hat{P}_{
 u}] = i\hbar\eta_{\mu
 u}$
- ullet Heisenberg-Weyl symmetry $[Y_{\mu}, E_{
 u}] = i\hbar \ c \ \eta_{\mu
 u} \ M$
- M is an effective Casimir element Newtonian mass m
- $-m\hat{X}_{\mu}\longleftarrow Y_{\mu}$, different m for different irr. representations
- $-\hat{P}_{\mu} \longleftarrow \frac{1}{c} E_{\mu}$, constant c (... $c \rightarrow \infty$ limit)

Against Poincaré Symmetry:-

• $\hat{P}_{\mu}\hat{P}^{\mu}$ cannot be Casimir operator $(=-m_{E}^{2}c^{2})$

$$-[\hat{X}_i,\hat{P}_{\mu}\hat{P}^{\mu}]=2i\hbar\hat{P}_i$$

• consider E-dynamics with Lorentz force

$$\hat{H}_{\tau} = \frac{1}{2m} \left(\hat{P}_{\mu} - \frac{e}{c} \hat{A}_{\mu} \right) \left(\hat{P}^{\mu} - \frac{e}{c} \hat{A}^{\mu} \right)$$

$$\frac{d\hat{X}^{\mu}}{d\tau} = \frac{1}{m} \left(\hat{P}^{\mu} - \frac{e}{c} \hat{A}^{\mu} \right) \equiv \frac{1}{m} \hat{\pi}^{\mu} , \qquad \frac{d}{d\tau} \left(\hat{P}^{\mu} - \frac{e}{c} \hat{A}^{\mu} \right) = 0$$

- $-\hat{\pi}^{\mu} = m \frac{d\hat{X}^{\mu}}{d\tau} \text{ satisfies } \hat{\pi}_{\mu} \hat{\pi}^{\mu} = -m_{E}^{2} c^{2} \text{ (no dynamical content)}$
- but only \hat{P}_{μ} is the true momentum (cf. Einstein 1935)
- $-\hat{P}_{\mu}\hat{P}^{\mu}$ evolves nontrivially

Position Operator for Composite System:-

— product representation with all abstract generators G as

$$\hat{G} = \hat{G}_a \otimes \hat{I} + \hat{I} \otimes \hat{G}_b$$

- additive mass $\hat{M} = \hat{M}_a \otimes \hat{I} + \hat{I} \otimes \hat{M}_b$ $(m = m_a + m_b)$
- additive momentum $\hat{P}^{\mu} = \hat{P}^{\mu}_a \otimes \hat{I} + \hat{I} \otimes \hat{P}^{\mu}_b$ $(P^{\mu} = \frac{1}{c}E^{\mu})$
- position is not an additive notion

$$-\hat{X}^{\mu} \equiv \frac{1}{m}\hat{Y}^{\mu} = \frac{1}{m}(m_a\hat{X}^{\mu}_a \otimes \hat{I} + \hat{I} \otimes m_b\hat{X}^{\mu}_b)$$
 as center of mass

• Heisenberg-Weyl as part of Galilean (\rightarrow 3+1 version)

Symmetry Theoretical Formulation:-

- take regular representation of H(1,3) (Heisenberg-Weyl)
- generators as left-invariant vector fields ($\hbar = 2$)

$$Y^{\scriptscriptstyle L}_{\mu} = x_{\mu} i \partial_{\zeta} + i \partial_{v^{\mu}} , \quad E^{\scriptscriptstyle L}_{\mu} = c \, v_{\mu} i \partial_{\zeta} - i c \, \partial_{x^{\mu}} , \quad M^{\scriptscriptstyle L} = i \partial_{\zeta}$$

• to irr. components (inverse Fourier-Plancherel transform)

$$\alpha(v^{\mu}, x^{\mu}, \zeta) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int dm \, \alpha_{m}(v^{\mu}, x^{\mu}) \, e^{-im\zeta} |m|^{n}$$

$$-\hat{X}^{\!\scriptscriptstyle L}_\mu = x_\mu + i\partial_{p^\mu}\;,\quad \hat{P}^{\!\scriptscriptstyle L}_\mu = p_\mu - i\partial_{x^\mu}\;,\quad \hat{M}^{\!\scriptscriptstyle L} = m$$

- complete rep. of proper extensive enveloping/group C^* -algebra
- operators as $\alpha(p_{\mu}, x_{\mu}) \star = \alpha(p_{\mu} \star, x_{\mu} \star) \equiv \alpha(\hat{P}_{\mu}^{L}, \hat{X}_{\mu}^{L})$
- wavefunctions $\phi(p^{\mu}, x^{\mu}) = \sqrt{p^{\mu}, x^{\mu}} |\phi\rangle = \langle p_{\mu}, x_{\mu} | \phi \rangle$

Minkowski Metric Operator $\hat{\eta}$ on Krein Space :-

- Minkowski nature of proper invariant inner product
- effectively, bra as $\eta(\cdot) = \langle \cdot | \hat{\eta} \rangle$
- naive $|\phi(x^{\mu})|^2$ integral cannot avoid divergence
- observables (pseudo-)Hermitian,

$$\left| egin{aligned} \sqrt{\left| \cdot
ight|} \hat{A}^{\dagger^{\eta}} \cdot
ight> = \sqrt{\left| \hat{A} \cdot
ight|} \end{aligned}$$

$$-\hat{X}_{\mu} = \hat{\eta}\hat{X}^{\mu}\hat{\eta}^{-1}$$
 and $\hat{P}_{\mu} = \hat{\eta}\hat{P}^{\mu}\hat{\eta}^{-1}$

$$\hat{P}_{\mu}=\hat{\eta}\hat{P}^{\mu}\hat{\eta}^{-1}$$

- noncommutative geometric picture
- $-\hat{X}^{\mu}$ and \hat{P}^{μ} as coordinates

The Symplectic Geometry — NC Vs C:-

• Heisenberg —
$$\frac{d}{ds}\alpha(\hat{P}_{\mu},\hat{X}_{\mu}) = \frac{1}{i\hbar}[\alpha(\hat{P}_{\mu},\hat{X}_{\mu}),\hat{H}_{s}]$$

$$ullet$$
 Schrödinger $- rac{d}{ds} f_{\!\scriptscriptstylelpha}(z^n,ar{z}^n) = \{f_{\!\scriptscriptstylelpha}(z^n),f_{\!\scriptscriptstyle H_{\!\scriptscriptstyle s}}\}$

•
$$f_{\alpha}(z^n, \bar{z}^n) \equiv \frac{\sqrt{\phi |\alpha(\hat{P}_{\mu}, \hat{X}_{\mu})|\phi}}{\sqrt{\phi |\phi\rangle}}$$
 $\left(|\phi\rangle = \sum_n z^n |n\rangle\right)$

- as the pull-back of $\hat{\alpha}$ under $(z^n, \bar{z}^n) \longrightarrow (\hat{P}_{\mu}, \hat{X}_{\mu})$
- \bullet \to bijective homomorphism between NC Poisson algebras
- NC Kähler product $f_{\alpha}\star_{\kappa}f_{\alpha'}=f_{\alpha\alpha'}$

Cirelli et.al 90

NC values of NC coordinates :-

- NC number as the new convenient fiction
- state as evaluative homorphism
- mapping observable algebra to algebra of their NC values

$$[\hat{\boldsymbol{\alpha}}]_{\phi} = \{ f_{\alpha}|_{\phi}, V_{\alpha_n}|_{\phi} \} \qquad (V_{\alpha_n} = \frac{\partial f_{\alpha}}{\partial z^n} = -f_{\beta}\bar{z}^n + \sum_{m} \bar{z}^m \langle m|\hat{\alpha}|n\rangle)$$

• Kähler product — $[\hat{\alpha}\hat{\alpha}']_{\phi} = [\hat{\alpha}]_{\phi} \star_{\kappa} [\hat{\alpha}']_{\phi}$

$$f_{\alpha\alpha'} = f_{\alpha}f_{\alpha'} + \sum_{n} V_{\alpha_n}V_{\alpha'_{\bar{n}}}, \qquad V_{\alpha\alpha'_n} = -f_{\alpha\alpha'}\bar{z}_n + \sum_{m,l} \bar{z}_m \langle m|\hat{\alpha}|l\rangle \langle l|\hat{\alpha}'|n\rangle$$

Deutsch & Hayden 00; Kong 23

• locality of quantum information (Heisenberg picture)

Galvão & Hardy 03

• Substituting a Qubit for an Arbitrarily Large Number of Classical Bits'

Concept of Numbers (in history):

•
$$x + 2 = 0$$
 — negative numbers

•
$$2x - 1 = 0$$
 \rightarrow rational numbers

•
$$x^2 - 2 = 0$$
 \rightarrow real numbers

$$ullet 2x-1=0 \qquad o \qquad ext{rational numbers}$$
 $ullet x^2-2=0 \qquad o \qquad ext{real numbers}$
 $ullet x^2+1=0 \qquad o \qquad ext{complex numbers}$

$$\bullet \ xy - x - i = 0 \qquad \rightarrow \qquad (i,2), \ (\frac{1}{i-1},-i), \ \ldots$$

•
$$xy - yx - 1 = 0$$
 \rightarrow noncommutative numbers

$$\star \hat{x}\hat{p} - \hat{p}\hat{x} - i\hbar = 0$$

needs NC/q-number values for the variables

$H_{R}(1,3)$ symmetry:-

$$\begin{split} [J'_{\mu\nu}, J'_{\rho\sigma}] &= i\hbar \, c \left(\eta_{\nu\sigma} J'_{\mu\rho} + \eta_{\mu\rho} J'_{\nu\sigma} - \eta_{\mu\sigma} J'_{\nu\rho} - \eta_{\nu\rho} J'_{\mu\sigma} \right) , \\ [J'_{\mu\nu}, Y_{\rho}] &= i\hbar \, c \left(\eta_{\mu\rho} Y_{\nu} - \eta_{\nu\rho} Y_{\mu} \right) , \\ [J'_{\mu\nu}, E_{\rho}] &= i\hbar \, c \left(\eta_{\mu\rho} E_{\nu} - \eta_{\nu\rho} E_{\mu} \right) , \\ [Y_{\mu}, E_{\nu}] &= i\hbar \, c \, \eta_{\mu\nu} \, M \end{split}$$

- semi-direct product of H(1,3) and Lorentz symmetry
- Casimir elements -M, $\frac{1}{2}T_{\mu\nu}T^{\mu\nu}$, $\frac{1}{4}\epsilon^{\mu\nu\rho\sigma}T_{\mu\nu}T_{\rho\sigma}$ $T_{\mu\nu} \equiv MJ'_{\mu\nu} (Y_{\mu}E_{\nu} Y_{\nu}E_{\mu})$
- $ullet H_{\!\scriptscriptstyle R}(1,3)$ irr. reps. as direct products of those of H(1,3) and Lorentz symmetry generated by $T_{\mu
 u}$
- spin operators $\hat{S}_{\mu\nu} = \frac{1}{mc}\hat{T}_{\mu\nu} = \hat{J}_{\mu\nu} \hat{L}_{\mu\nu}$

Symmetry Contraction $c \to \infty$:-

$$(J_{\mu\nu} = \frac{1}{c}J'_{\mu\nu}), K_i = \frac{1}{c}J_{i0}, P_i = \frac{1}{c}E_i, T' = \frac{-1}{c}Y_0, H \equiv -E_0$$

- $ullet \ H_{\!\scriptscriptstyle R}(1,3) o H_{\!\scriptscriptstyle GH}(3) \supset H_{\!\scriptscriptstyle R}(3)$
- dynamical theory → 'nonrelativistic' theory

Symmetry Contraction to Classical:-

$$Y_{\mu}^{c} = \frac{1}{k_{y}} Y_{\mu}, E_{\mu}^{c} = \frac{1}{k_{e}} E_{\mu}; \qquad k_{y}, k_{e} \to \infty$$

- ullet M decouples and $[Y^c_\mu, E^c_
 u] = 0$
- \bullet quantum theory \rightarrow classical theory
- projective Krein/Hilbert space → classical phase space
- Heisenberg picture direct (NC to C)
- Schrödinger picture to Koopman-von Neumann picture

Covariant Hamiltonian Dynamics:-

- $ullet \, rac{d}{d au} = -rac{1}{i\hbar}[\hat{H}_{ au}, \cdot]$
- evolution parameter τ defined by the Hamiltonian (flow)
- Schrödinger equation $\frac{d}{d\tau}\phi(x^{\mu}) = \frac{1}{i\hbar}\hat{H}_{\tau}\phi(x^{\mu})$ $-\hat{H}_{\tau} = \frac{\hat{P}_{\mu}\hat{P}^{\mu}}{2m} + V(\hat{X}^{\mu})$

 $V(\hat{X}^{\mu})=0, \quad au ext{-independent eq. as Klein-Gordon eq.}$

- ullet only $V(\hat{X}^{\mu})$ allows potential in 'nonrelativistic' limit
- Piron-Reuse (75) frame for two-particle dynamics

$$p^i = \mu \frac{dx^i}{d\tau}$$
, $\frac{dp_i}{d\tau} = -\frac{\partial V(x_i x^i)}{\partial x^i}$, with $\frac{E_{c.m.}}{mc} \tau$ as common time

'Quantum Field Theory':-

- obtained from $H_R(1,3)$ symmetry + '2nd-quantization'
- m = 0 irr. representations (? quantum)
- $-[\hat{Y}_{\mu},\hat{E}_{\nu}]=0,\,\hat{E}_{\mu}\hat{E}^{\mu}$ as effective Casimir operator
- e.g. vector space of $|\vec{p}\rangle$ with $p_{\mu}p^{\mu} = -m_E^2c^2$ $(\hat{E}_{\mu} = cp_{\mu})$
- $ullet \hat{a}_{ec{p}} \ket{0} = 0 \;, \quad \ket{ec{p}_1 \ldots ec{p}_n} = \sqrt{2 E_{ec{p}_1} \ldots 2 E_{ec{p}_n}} \hat{a}_{ec{p}_1}^\dagger \ldots \hat{a}_{ec{p}_n}^\dagger \ldots \ket{0}$
- not '2nd-quantization' of RQM
- true $\phi(x^{\mu})$ or $\tilde{\phi}(p^{\mu})$, as span of $|p^{\mu}\rangle$, theory
- '2nd-quantization' of NRQM $m \to 0$ limit + Lorentz sym

Concluding Remarks:-

- fully consistent theory of quantum particle dynamics
- $(\hat{X}_{\mu}, \hat{P}_{\mu})$ -NC geometry as spacetime
- irr. representation, cf. classical Minkowski spacetime
- (3 + 1) Gel'fand-Kirillov dimension (module of Weyl algebra)
- quantum phase space as 'Euclidean' NC-geometry?
- noncommutative reality of NC-values
- issues about quantum field theory
- metric operator for quantum gravity?
- noncommutative numbers?
- Dirac's q-number, Takesaki's NC number theory
- X-X and P-P noncommutating physics ?

Fundamental (Special) Quantum Relativity:

$$SO(2,4) \sim SU(2,2)$$
 (cf. deformed S.R.)

- ullet contains noncommuting Y_{μ} and P_{μ} , M
- contains Lorentz symmetry $J_{\mu\nu}$
- stable symmetry, no deformation
- G, \hbar , c in structural constants

- (Lie algebra) contractions as approximations
- deformation is 'inverse' of contraction