

Status of Supersymmetry (SUSY) searches in CMS

Emery Nibigira (UTK)

On behalf of the CMS Collaboration

BSM 2023 - Egypt 6-9 November

SUSY is one of many Standard Model (SM) extensions, it provides solutions to several SM limitations

O Dark Matter (DM) candidate \rightarrow SUSY presents WIMP DM

• Hierarchy problem \rightarrow SUSY stabilizes the low Higgs boson mass

candidate* if R-Parity is conserved

*The lightest supersymmetric particle (LSP)

How does CMS collaboration look for SUSY particles?

Non-exhaustive collaboration

How does CMS collaboration look for SUSY particles?

Non-exhaustive collaboration

Experimental approaches

 \bigcirc High beam energy \rightarrow explore TeV scale $\bigcirc More \, data \rightarrow probe \, rare \, processes$ New ideas & new search tool

 $pp, \sqrt{s} = 13 \text{ TeV}, \text{ NLO+NLL} - \text{NNLO}_{approx} + \text{NNLL}$

CMS

 $pp, \sqrt{s} = 13 \text{ TeV}, \text{ NLO+NLL} - \text{NNLO}_{approx} + \text{NNLL}$

SUSY searches with CMS detector @ 13 TeV

 \mathbf{CMS}

$137 \text{ fb}^{-1} (13 \text{ TeV})$ Synopsis: mass reach, per models ${ m pp} ightarrow { ilde{ extbf{g}}}{ ilde{ extbf{g}}}$ $\tilde{\mathbf{g}} \to \mathbf{tt} \tilde{\chi}_1^0$ 0*l*: arXiv:1909.03460;1908.04722,2103.01290 Despíte numerous SUSY searches, **ℓ**: arXiv:1911.07558 2ℓ same-sign and $\geq 3\ell$: arXiv:2001.10086 no experimental evidence at LHC $\tilde{\mathbf{g}} \to \mathbf{b} \mathbf{b} \tilde{\chi}_1^0 | \mathbf{0} \ell$: arXiv:1909.03460;1908.04722 $\tilde{\mathbf{g}} \rightarrow \mathbf{q} \mathbf{q} \tilde{\chi}_1^{\mathbf{0}}$ **0***ℓ*: arXiv:1909.03460;1908.04722 $\tilde{\mathbf{g}} \to \mathbf{q}\mathbf{q}(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0) \to \mathbf{q}\mathbf{q}(\mathbf{W}/\mathbf{Z})\tilde{\chi}_1^0$ 0*l*: arXiv:1908.04722 Mass límits have been set at 95% CL same-sign and $\geq 3\ell$: arXiv:2001.10086 in the context of simplified models 500and for dífferent final states **CMS** Preliminary **Overview of SUSY results: electroweak production** $137 \text{ fb}^{-1} (13 \text{ TeV})$ $\mathrm{pp} ightarrow ilde{\chi}_2^0 ilde{\chi}_1^\pm$ $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow \ell \tilde{\nu} \ell \tilde{\ell} \rightarrow \ell \nu \ell \ell \tilde{\chi}_1^0 \tilde{\chi}_1^0$ 2 ℓ same-sign and 3 ℓ : arXiv:2106.14246 2ℓ same-sign and $\geq 3\ell$: arXiv:2106.14246 2ℓ same-sign and $\geq 3\ell$: arXiv:2106.14246 $\mathbf{pp} \to \tilde{\chi}_{\mathbf{2}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\pm} \to \tilde{\tau} \nu \ell \tilde{\ell} \to \tau \nu \ell \ell \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}}$ **2** ℓ same-sign and 3 $\ell / \tau_{\mathbf{h}}$: arXiv:2106.14246 ⁷τ_h: arXiv:2106.14246 $3\ell/\tau_{\rm h}$: arXiv:2106.14246 https://cms- $\mathbf{pp} \to \tilde{\chi}_{\mathbf{2}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\pm} \to \tilde{\tau} \nu \tau \tilde{\tau} \to \tau \nu \tau \tau \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \ge \mathbf{3} \ell / \tau_{\mathbf{h}}: arXiv:2106.14246$ τ dominated, x = 0.5results.web.cern.ch/ $\mathbf{pp} \to \tilde{\chi}_{\mathbf{2}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\pm} \to \mathbf{WH} \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}}$ **2** ℓ same-sign and $\geq 3\ell/\tau_{\mathbf{h}}$: arXiv:2106.14246 cms-results/public- $1\ell + jets: arXiv:2107.12553$ 0ℓ W+X: arXiv:2205.09597 results/publications/ Combination: SUS-21-008 SUS/index.html $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow WZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ 2 ℓ opposite-sign: arXiv:2012.08600 2ℓ same-sign and 3ℓ: arXiv:2106.14246 **2** ℓ and **3** ℓ soft: arXiv:2111.06296 $\Delta M = 5-10$ GeV 0ℓ W+X: arXiv:2205.09597 Combination: SUS-21-008 $\mathbf{pp} \to \tilde{\chi}_{\mathbf{2}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\pm} / \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \tilde{\chi}_{\mathbf{1}}^{\pm}, \tilde{\chi}_{\mathbf{1}}^{\pm} / \tilde{\chi}_{\mathbf{2}}^{\mathbf{0}} \to (\mathbf{W}^* / \mathbf{Z}^*) \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \boxed{2\ell \text{ and } 3\ell \text{ soft: } arXiv:2111.06296 \text{ higgsino simplified model, } \Delta M = 5-10 \text{ GeV}$ $\mathbf{pp} ightarrow ilde{\chi}_1^{\pm} ilde{\chi}_1^{\pm}$ $\mathbf{pp} ightarrow ilde{\chi}_1^{\pm} ilde{\chi}_1^{\pm}, ilde{\chi}_1^{\pm} ightarrow \mathbf{W} ilde{\chi}_1^{\mathbf{0}} \Big|$ **2** ℓ opposite-sign: arXiv:1807.07799 $M_{\tilde{\chi}_{1}^{0}} = 1 \text{ GeV} (\mathcal{L} = 35.9 \text{ fb}^{-1})$ Only a handful of 0ℓ W+X: arXiv:2205.09597 recent searches $\mathbf{pp} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to (\tilde{\ell} \nu / \ell \tilde{\nu}) \to \ell \nu \tilde{\chi}_1^0$ 2 ℓ opposite-sign: arXiv:1807.07799 in this talk $\mathbf{pp} \to \tilde{\ell}_{\mathbf{L}/\mathbf{R}} \tilde{\ell}_{\mathbf{L}/\mathbf{R}}, \tilde{\ell} \to \ell \tilde{\chi}_{1}^{\mathbf{0}} \xrightarrow{\mathbf{e}^{+}\mathbf{e}^{-}, \mu^{+}\mu^{-}: arXiv:2012.08600}$ 200400 600 800

mass scale [GeV]

Searches for Electroweak production of sleptons, charginos, neutralinos

• Combination of 6 different SUSY searches to enhance sensitivity to a wide range of Electroweak (EW) SUSY mass hypotheses

Extremely challenging searches - benefit from combinations!

CMS

Searches for Electroweak production of sleptons, charginos, neutralinos

The "2/3I soft" search excludes $m_{\tilde{l}}$ of ~215 GeV at $\Delta m = 5 \ GeV$

CMS

Searches for Electroweak production of sleptons, charginos, neutralinos

The "2/3I soft" search excludes $m_{\tilde{i}}$ of ~215 GeV at $\Delta m = 5 GeV$

Search for stealth SUSY

$_{\odot}$ Target neutralino (LSP of visible sector), decaying into stealth sector singlino $ilde{S}$ and photon \rightarrow Final state with a singlet S and low-momentum gravitino \tilde{G} (LSP of hidden sector)

Search for stealth SUSY

• Target neutralino (LSP of visible sector), decaying into stealth sector singlino S and photon \rightarrow Final state with a singlet S and low-momentum gravitino \tilde{G} (LSP of hidden sector)

• 2 photons + ≥ 4 jets + $\log p_T^{miss}$ • $S_T > 1200 \ GeV$ (scalar sum of all object p_T) • Extract signal in S_T distribution in bins of jet multiplicity (4,5, ≥ 6 jets) 138 fb⁻¹ (13 TeV) CMS Events/GeV ••••• Predicted background (post-fit) • Data '_{iets} ≥ 6 $(m_1, m_2) = (1200, 1100) \text{ GeV}$ 10 $(m_{2}, m_{0}) = (1150, 200) \text{ GeV}$ 10^{-2} jet multiplicity 10^{-3} (m₂, m₂) = (1800, 900) GeV 10⁻⁴ ops. events bred pkg 0.25 1500 2000 2500 3000 3500 S_{τ} (GeV)

Search for strongly produced stealth SUSY:

Search for stealth SUSY

$_{\odot}$ Target neutralino (LSP of visible sector), decaying into stealth sector singlino S and photon \rightarrow Final state with a singlet S and low-momentum gravitino \tilde{G} (LSP of hidden sector)

Upper limit at 95% CL for fixed singlino, singlet and gravitino masees Gluino masses excluded up to 2.15 TeV Light squark masses up to 1.85 TeV 138 fb⁻¹ (13 TeV) CMS -section (pb) m_₀ (GeV) pp→q̃q̃, q̃→ $\tilde{\chi}_{_1}^0$ q, $\tilde{\chi}_{_1}^0$ →γS̃, S̃→SG̃, S→gg $2000 \mid (m_{g} = 100 \text{ GeV}, m_{S} = 90 \text{ GeV}, m_{\tilde{c}} = 0)$ **Expected** $\pm 1\sigma$, $\pm 2\sigma$ (experiment) \blacksquare Observed $\pm 1\sigma$ (theory) **NNLO+NNLL** exclusion · 10⁻² ^{ss} 10 1500 00 per limit 1000 500 00 2000 m_ã (GeV)

1400

1600

1800

Search for direct top squark pair production

• Search for top squarks produced in pairs in the final state with two τ leptons

- **Top squarks** play an important role in stabilizing Higgs mass
- The interaction of charginos/neutralinos with fermion-sfermion
 - involves both gauge & Yukawa terms \rightarrow coupling to 3rd generation

Search for direct top squark pair production

• Search for top squarks produced in pairs in the final state with two τ leptons

- 0
- 0

• 15 search regions binned in p_T^{miss} , m_{T2} , H_T

Top squarks play an important role in stabilizing Higgs mass

The interaction of charginos/neutralinos with fermion-sfermion

involves both gauge & Yukawa terms \rightarrow coupling to 3rd generation

Search for direct top squark pair production

• Search for top squarks produced in pairs in the final state with two τ leptons

Top squark masses excluded up to about 1150 GeV 0

Masses of SUSY particles appearing in the decay chain are parameterized as

$$\begin{split} m_{\tilde{\chi}_{1}^{-}} - m_{\tilde{\chi}_{1}^{0}} &= 0.5 \ (m_{\tilde{t}_{1}} - m_{\tilde{\chi}_{1}^{0}}) \\ m_{\tilde{\tau}_{1}} - m_{\tilde{\chi}_{1}^{0}} &= x \ (m_{\tilde{\chi}_{1}^{-}} - m_{\tilde{\chi}_{1}^{0}}) \\ \text{where } x \in [0.25, 0.5, 0.75], \text{ and } m_{\tilde{\nu}_{\tau}} = m_{\tilde{\tau}_{1}} \end{split}$$

CMS

Search for SUSY in photon + jets events

- Target events with final states consisting of ≥ 1 high p_T photon, high jet multiplicity, p_T^{miss}
- Explore both strong and electroweak productions
 - Several SUSY models are considered

Search for SUSY in photon + jets events

- Target events with final states consisting of ≥ 1 high p_T photon, high jet multiplicity, p_T^{miss}
- Explore both strong and electroweak productions
 - Several SUSY models are considered

45 search regions binned in: • p_T^{miss} , N_{b-jets} , V tag, H tag

CMS

Backgrounds estimated by transfer factors applied to data control regions

Search for SUSY in photon + jets events

CMS

- Several SUSY models are considered

CMS

- Target charged long-lived particles (LLP) in final states with ≥ 1 disappearing tracks
- If wino/higgsno is the LSP, masses of $\tilde{\chi}_1^{\pm}$ are highly degenerate $\rightarrow \tilde{\chi}_1^+$ is a LLP

Search for SUSY in final states with disappearing tracks (DTk)

Search for SUSY in final states with disappearing tracks (DTk)

Target charged long-lived particles (LLP) in final states with ≥ 1 disappearing tracks

CMS

• If wino/higgsno is the LSP, masses of $\tilde{\chi}_1^{\pm}$ are highly degenerate $\rightarrow \tilde{\chi}_1^+$ is a LLP

DTk are classified based on their dE/dx **in the pixel detector**

Search for SUSY in final states with disappearing tracks (DTk)

35

40

45

Bin number

50

• Target charged long-lived particles (LLP) in final states with ≥ 1 disappearing tracks

CMS

• If wino/higgsno is the LSP, masses of $\tilde{\chi}_1^{\pm}$ are highly degenerate $\rightarrow \tilde{\chi}_1^{+}$ is a LLP

Data consistent with the expectation

Search for SUSY in final states with disappearing tracks (DTk)

- Upper limits at 95% C.L.:
 - for different choices of $\tilde{\chi}_1^{\pm}$ proper decay length $c\tau$
 - $m_{\tilde{t}}$ excluded up to ~1.6 TeV for $c\tau(\tilde{\chi}_{1}^{\pm}) = 200 \ cm$
 - Upper limits also set for:
 - $pp \rightarrow \tilde{b}\tilde{b}$: excluding $m_{\tilde{b}}$ up to ~1.5 TeV
 - $pp \rightarrow \tilde{g}\tilde{g}$: excluding $\mathcal{M}_{\tilde{g}}$ up to ~2.3 TeV

Recent CMS SUSY searches were presented using full Run 2 data @ 13 TeV $\mathbf{\mathbf{x}}$

Strong/Electroweak SUSY, Stealth SUSY, unconventional signatures (disappearing tracks) Ŵ No evidence of physics beyond the Standard Model in LHC data

CMS continues to enhance its search strategy $\mathbf{\mathbf{x}}$

- Combining multiple searches, exploring challenging final states, etc Ŵ
- Small fraction of results, more SUSY searches in the backup slide $\widehat{\mathbf{x}}$
- Some Run-2 analysis have not yet released their results though $\mathbf{\mathbf{x}}$
- ***** There is still room for improvement: LHC Run-3, HL-LHC, new detectors

Supported by the Department of Energy, Office of Science, under Grant No. DE-SC0023321 and the National Science Foundation, under Award No. 2235028

SUSY searches with CMS detector @ 13 TeV

Synopsis: mass reach, per models

Mass límíts at 95% CL obtained in the context of símplífied models and for dífferent final states

	UMS
	Overview of SUSY
	$137 \text{ fb}^{-1} (13 \text{ TeV})$
	${f pp} o {f ilde g}{f ilde g}$
${f ilde g} ightarrow {f tt} ilde \chi_1^{m 0}$	0 <i>ℓ</i> : arXiv:1909.03460;1908.04722
	1 ℓ: arXiv:1911.07558
	2ℓ same-sign and $\geq 3\ell$: arXiv
$ ilde{\mathbf{g}} ightarrow \mathbf{bb} ilde{\chi}_1^{0}$	0 <i>ℓ</i> : arXiv:1909.03460;1908.04722
$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\chi}_1^{0}$	0 <i>ℓ</i> : arXiv:1909.03460;1908.04722
$/ ilde{\chi}^{0}_{2}) ightarrow \mathbf{q} \mathbf{q} (\mathbf{W}/\mathbf{Z}) ilde{\chi}^{0}_{1}$	0 ℓ: arXiv:1908.04722
	2ℓ same-sign and $\geq 3\ell$: arXiv
	I
() 500

31	~
July 2023	
Μ	
a) $[36 \text{ fb}^{-1}]$ a) $[36 \text{ fb}^{-1}]$ [4000000000000000000000000000000000000	
(max. exclusion)	
(max. exclusion)	
(max. exclusion) (max. exclusion)	

SUSY searches with CMS detector @ 13 TeV: Overview of mass limits

CMS

