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Coherent Elastic Neutrino Nucleus Scattering

Coherent Elastic Neutrino
Nucleus Scattering
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Coherent Elastic Neutrino Nucleus Scattering

CEνNS Process
• A Standard Model (SM) process, where neutrinos interact with the

nucleus via Z exchange as a whole, followed by the recoiled nucleus.
• Theoretically proposed around half a century ago (Freedman, 1974),

experimentally observed recently by COHERENT collaboration
(Akimov et al, 2017).
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• Some characteristics: Eν ≲ 50 MeV, Tnr ≲ 50 keV.
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Coherent Elastic Neutrino Nucleus Scattering

• It is the largest observable
among other processes involving
neutrinos.

• Difficult to observe, its nuclear
recoil energy lies in low keV
scales.

• Hence, it provides a promising
novel framework to investigate
fundamental parameters of the
SM and new physics beyond the
SM (BSM).

• It triggers developments of
sensitive detector technology.

Figure from Akimov et. al., 2017.
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Coherent Elastic Neutrino Nucleus Scattering

CEνNS Cross-Section

The differential cross section of
CEνNS is[

dσ
dTnr

]
=

G2
F mN
π

Q2
SM

(
1 − mNTnr

2E 2
ν

)
×
∣∣F (|⃗q|2)

∣∣2,
(1)

GF : Fermi constant; mN : nucleus
mass. The weak charge coupling:

QSM = gp
VZ + gn

VN (2)

gp
V = 1/2(1 − 4 sin2 θW ), gn

V =
−1/2. Form factor: the Helm pa-
rameterization (Helm, 1956)
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with Q2 ≡ −q2 = 2mNTnr .
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Coherent Elastic Neutrino Nucleus Scattering

Worldwide Efforts to Measure CEνNS

Figure from R. Dmitrii’s talk@Magnificent CEvNS2023

• Except for COHERENT and Captain Mills, all others are attempting to use
nuclear reactors as a neutrino source.

• Reactors provide a large constant energy neutrino flux.
• CEνNS and Dark Matter Community are both making a great effort to

improve and increase the number of available experimental probes.
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Coherent Elastic Neutrino Nucleus Scattering

Neutrino Sources
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Solar Neutrinos

Solar Neutrinos
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Solar Neutrinos

Neutrinos from the Sun

• It is one of the most intensive natural neutrino sources on the earth.
• Neutrinos are produced as electron neutrinos by the nuclear fusion

inside the Sun.
• The general information of solar neutrino is part of the Standard Solar

Model.
• Two main processes: pp chain and CNO cycle.
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Solar Neutrinos
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Solar Neutrinos

• Solar neutrino fluxes with
uncertainties from the
high-metallicity solar neutrino
model BS05(OP) (Bahcall &
Serenelli, 2005).
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Vector Mediators from U(1)′ Symmetry

Vector Mediator from U(1)′
Symmetry
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Vector Mediators from U(1)′ Symmetry

The U(1)’ Symmetry

• We consider the SM extensions with the addition of a U(1)′ gauge
group with an associated neutral gauge boson Z ′ (Mohapatra & Pati,
1975).

• The SM is expanded by adding three right-handed neutrinos so that
the anomaly-free requirement is satisfied (Basso et. al., 2009).

• This addition simultaneously explains the smallness of neutrino mass
through the see-saw mechanism (Mohapatra & Senjanovic, 1980).

• Other unsolved puzzles in the SM that can be explained in such
models: grand unified theory, nature of DM, leptogenesis, etc.
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Vector Mediators from U(1)′ Symmetry

The Lagrangians
• For general Z ′ mediator, the interaction Lagrangian with SM particles

is given by (Cerdeon et. al., 2016):

LZ ′ = Z ′
µ

[ ∑
q=u,d

Q′
qgq

Z ′ q̄γµq + Q′
ℓg

νℓ
Z ′ ν̄ℓLγ

µνℓL

]
. (4)

• The differential cross-section is given by:[
dσ

dTnr

]
SM+Z ′

=

[
1 +

QZ ′
√

2GF QSM(m2
Z ′ + 2mNTnr )

]2 [
dσ

dTnr

]
SM

.

(5)

• The weak vector charge is

QZ ′ =

[
Z(2Q′

u + Q′
d) +N (Q′

u + 2Q′
d)

]
gq

Z ′gνℓ
Z ′Q′

ℓ. (6)
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Vector Mediators from U(1)′ Symmetry

The B − L and B − 3Le,µ,τ Models
• We consider vector Z ′ mediator with an associated U(1)′ gauge group

for a variety of models including U(1)B−L (Mohapatra, 1975),
U(1)B−3Le , U(1)B−3Lµ , and U(1)B−3Lτ (Ma & Sarkar, 1998; Chang
et. al., 2001).

• These models differ in terms of the charges of the fermions with the
associated gauge group.

• This difference determines the contributions of each model to
CEνNS, mediated by the Z ′ vector boson.
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Vector Mediators from U(1)′ Symmetry

• Since the U(1)B−3Le , U(1)B−3Lµ , and U(1)B−3Lτ models depend on
different neutrino flavors, we consider the solar neutrino survival
probabilities.

• These are:

Pee = cos4 θ13Peff + sin4 θ13, (7)
Peµ = (1 − Pee) cos

2 θ23, (8)
Peτ = (1 − Pee) sin

2 θ23, (9)

• The factor Peff is the matter effect that satisfies

Peff = sin2 θ12, (10)

for solar neutrino in a few MeV energy (PDG, 2022).
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Event Rate

Event Rate
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Event Rate

Event Rate

• The minimum neutrino energy
satisfies
Emin
ν = Tnr

2

(
1 +

√
1 + 2mN

Tnr

)
.

• The maximum nuclear recoil energy
obeys T max

nr = 2E2
ν

2Eν+mN
.

• The differential event rate of the
CEνNS:

dR
dTnr

= NT

∫ Emax
ν

Emin
ν

dEν
dΦ(Eν)

dEν

dσ(Eν ,Tnr )

dTnr
.

(11)
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Event Rate

Quenching Factor

• The observed physical quantity is electron-equivalent energy. To relate
this with nuclear recoil energy, quenching factor Y (Tnr ) is needed.

• For this purpose, we utilize the Lindhard quenching factor (Lindhard
et. al., 1963):

Y (Tnr ) =
kg(ϵ)

1 + kg(ϵ) , (12)

with

g(ϵ) = 3ϵ0.15 + 0.7ϵ0.6 + ϵ

ϵ =11.5Z−7/3Tnr ,
(13)

where k = 0.16, closely matches the recent low-energy measurement
(Bonhomme et. al., 2022).

Karadeniz Technical University Beyond Standard Model: From Theory to Experiment (BSM-2023) 20



Event Rate

• The Linhard formula is acceptable for high recoil energy, namely
0.254 keV < Tnr < 10 keV.

• Below this range, in the range of 0.04 keV < Tnr < 0.254 keV, we
consider for Ge target (Essig et. al., 2018)

Y (Tnr ) = 0.18
[
1 − exp

(
15 − Tnr

71.03

)]
(14)

• The Tnr (keV) can be converted into Tee(keV) by

Tee = Y (Tnr )Tnr . (15)

• Hence, the differential rate as the electron equivalency is given by

dR
dTee

=
dR

dTnr

1
Y (Tnr ) + Tnr

dY (Tnr )
dTnr

. (16)
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Analysis and Results

Analysis and Results
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Analysis and Results

χ2-Analysis
• In this study, we are interested in the CEνNS with solar neutrinos

from the recent CDEX-10 experiment (Geng et. al., 2023).
• We use 20 data points, related to neutrino-nucleus scattering.
• The electron-equivalent recoil energy data are converted to nuclear

recoil with the Linhard quenching factor.
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Analysis and Results

• We adopt the pull approach of the χ2 function (Fogli et. al., 2002):

χ2 = min(ξj )

20∑
i=1

(
R i

obs − R i
exp − B −

∑
j ξjc i

j
∆i

)2

+
∑

j
ξj (17)

.
• R i

obs and R i
exp are the observed and expected event rates, respectively.

in the i-th energy bin.
• ∆i denotes the experimental uncertainty.
• The solar neutrino flux uncertainty is represented by c i

j .
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Analysis and Results

B − L
• It addresses an improvement to the considered existing limits.
• Improvement to COHERENT in the intermediate mass scale;

outperformed in the low and high mass scales.
• Partially cover collider limits.
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Analysis and Results

B − 3Le

• It dominates oscillation, and COHERENT, while partially covering
Babar and it is outperformed by TEXONO limits.
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Analysis and Results

B − 3Lµ

• It improves limits of CCFR, and COHERENT in the low mass region.
• Partially covers LHCb, yet to reach oscillation limit.
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Analysis and Results

B − 3Lτ

• It dominates neutron-lead, as well as the limits of pion and kaon
decays.

• Still outperformed by oscillation limit.
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Summary

Summary
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Summary

Summary
• We have presented the constraints on light Z ′ mediator models from

the analysis of the current CDEX-10 data.
• We made comparisons with non-CEνNS constraints and with

(g − 2)µ allowed region.
• Our results indicate the CDEX-10 address improvements to the

existing limits of the B − L, B − 3Le , B − 3Lµ, and B − 3Lτ model.
• Such as the COHERENT limit, and more stringent bound are found

except for the B − 3Lτ model, while the oscillation limits are still yet
to be all covered except for B − 3Le .

• Phenomenological analyses of the recent CDEX-10 data can uncover
new insights into the beyond SM, placing complementary constraints
on a small range of parameters.

• CEνNS is a powerful tool to explore new physics scenarios beyond
SM.

• Another talk from our team will address the neutrino magnetic
moment effect in CEνNS using solar neutrino flux.
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Summary
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