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Part I: Background



Representations of the EM field

Electromagnetic waves have an 
electric component E and a 
magnetic component B.

A representation of the field is the chosen set of parameters that specify the 
properties of the field.  Different representations have various advantages and 
disadvantages. 

The fields have both  a magnitude 
and an orientation perpendicular to 
each other and the direction of 
propagation.



Position and momentum

The position representation

The momentum representation

The field is built up of localised parts.  
The magnitude of each part is 
specified by its position. 
Useful for modelling local dynamics.

The field is built up of non-localised 
harmonics.  The magnitude is specified 
by the frequency of each part. Useful for 
modelling stationary systems.

𝐸(𝑥, 𝑡) and 𝐵(𝑥, 𝑡)

෨𝐸(𝑘, 𝑡) and ෨𝐵(𝑘, 𝑡)



Quantising the EM field
Quantisation is usually in the momentum representation via canonical quantisation.

• Annihilation and creation operators 𝑎𝜆(𝑘, 𝑡) and 𝑎𝜆
†(𝑘, 𝑡) annihilate and 

create excitations of a single frequency |𝑘|𝑐 and polarisation 𝜆.

• Bosonic commutation relation.

𝑎𝜆 𝑘, 𝑡 , 𝑎
𝜆′
† (𝑘′, 𝑡) = 𝛿𝜆𝜆′ 𝛿(𝑘 − 𝑘′)

Orthogonal excitations can be used as a basis for single-photon wave 
packets:

| ۧ1 = ෍

𝜆

න

−∞

∞

𝑑𝑘 𝜓𝜆 𝑘 𝑎𝜆
†(𝑘, 𝑡)| ۧ0

| ۧ1 - single-photon state | ۧ0 - Vacuum state 𝜓𝜆 𝑘 - normalised momentum wave function



Field Observables

• In the momentum representation there is a simple relationship between the 
excitations and the fields.

ሚℰ 𝑘, 𝑡 =
ℏ|𝑘|

2𝐴𝜀
𝑎𝐻 𝑘, 𝑡 ො𝐲 + 𝑎𝑉(𝑘, 𝑡)ො𝐳

෩ℬ 𝑘, 𝑡 =
ℏ|𝑘|

2𝐴𝜀
−𝑎𝑉 𝑘, 𝑡 ො𝐲 + 𝑎𝐻 𝑘, 𝑡 ො𝐳

• A states containing 𝑎𝜆 𝑘, 𝑡 excitations generates a field with a wave vector 𝑘 and 
polarisation 𝜆.



Motivations
• Although quantisation possible in momentum representation, current 

descriptions are insufficient in some cases (Mirror Hamiltonians).
• Problems arise when we attempt to quantise the field in the position 

representation:

• Causality violations
• Non-locality of wave function
• No spherical symmetry (3D only)

Question: Is there an analogous and complementary description in position space?

Yes, there is!



Part II: Local photons



Localised wave packets

Starting point: Maxwell’s equations in free space.

𝜕2

𝜕𝑥2
−

1

𝑐2
𝜕2

𝜕𝑡2
𝑂 𝑥, 𝑡 = 0

𝑂 = 𝐸, 𝐵 𝑐 = speed of light

𝜕

𝜕𝑥
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1

𝑐

𝜕

𝜕𝑡

𝜕

𝜕𝑥
+
1

𝑐

𝜕

𝜕𝑡
𝑂 𝑥, 𝑡 = 0

There is a simple solution in the position representation

𝑂 𝑥, 𝑡 = ෍

𝑠=±1

𝑂𝑠(𝑥 − 𝑠𝑐𝑡)

• Wave has any shape
• Propagates without dispersion
• 𝑠 = ±1 indicate propagation to the left 

and the right

1D fields depends on x coordinate only



Local photons

Localised wave 
packet

±𝑐

• Introduce localised basis of excitations 
characterised by
• Position 𝑥 at a given time
• Polarisation 𝜆
• Direction of propagation 𝑠

• Creation and annihilation operators: 𝑎𝑠𝜆 𝑥, 𝑡

and 𝑎𝑠𝜆
† (𝑥, 𝑡)

𝑥

𝑥0 𝑥0 + sc(𝑡1 − 𝑡0)

𝑡0 𝑡1
• Propagation at speed of light: 
𝑎𝑠𝜆 𝑥, 𝑡 = 𝑎𝑠𝜆 𝑥 − 𝑠𝑐𝑡, 0



New parameters
• To ensure a localised basis, we need a local commutation relation:  

𝑎𝑠𝜆 𝑥, 𝑡 , 𝑎
𝑠′𝜆′
† (𝑥′, 𝑡) = 𝛿𝑠𝑠′ 𝛿𝜆𝜆′ 𝛿 𝑥 − 𝑥′ .

𝑎𝑠𝜆 𝑥, 𝑡 = න

−∞

∞
𝑑𝑘

2𝜋
𝑒𝑖𝑠𝑘𝑥 𝑎𝑠𝜆(𝑘, 𝑡)

• Localisation requires contributions from all 
wave vectors.

• Localisation is possible for each s 
independently.

• s is a new parameter unrelated to k
• Number of degrees of freedom are doubled

| ۧ1 = ෍

𝜆

න

−∞

∞

𝑑𝑘 𝜓𝑠𝜆 𝑥 𝑎𝑠𝜆
† (𝑥, 𝑡)| ۧ0

• Single-photon wave packets constructed as in momentum space:  

• Relationship to momentum operators:

𝜓𝑠𝜆 𝑥 - normalised position wave function



Dynamical Hamiltonian

𝐻𝑑𝑦𝑛 𝑡 = −𝑖෍

𝑠,𝜆

න

−∞

∞

𝑑𝑥 ℏ𝑠𝑐 𝑎𝑠𝜆
† (𝑥, 𝑡)

𝜕

𝜕𝑥
𝑎𝑠𝜆(𝑥, 𝑡)

𝐻𝑑𝑦𝑛 𝑡 ≠ energy

• Overcome causality problems (Hegerfeldt 1974, 
Malament 1996)

• A state with a negative frequency -𝜔 has the same 
positive energy as a state with the opposite 
frequency 𝜔.

Additional degrees of freedom correspond to negative frequency states

𝜕

𝜕𝑥
−
𝑠

𝑐

𝜕

𝜕𝑡
𝑎𝑠𝜆 𝑥, 𝑡 = 0



Field observables

E 𝑥, 𝑡 = ෍

𝑠=±1

න

−∞

∞

𝑑𝑥′ 𝑐 ℜ 𝑥 − 𝑥′ 𝑎𝑠𝐻 𝑥′, 𝑡 ෝ𝐲 + 𝑎𝑠𝑉 𝑥′, 𝑡 ො𝐳 + H. c

B 𝑥, 𝑡 = ෍

𝑠=±1

න

−∞

∞

𝑑𝑥′ 𝑠 ℜ 𝑥 − 𝑥′ −𝑎𝑠𝑉 𝑥′, 𝑡 ෝ𝐲 + 𝑎𝑠𝐻(𝑥
′, 𝑡)ෝ𝐳 + H. c

• ℜ(𝑥 − 𝑥′) determines how the field 
responds to local excitations at different 
positions.

• ℜ(𝑥 − 𝑥′) is determined from the 
energy.

• The fields display non-locality.

ො𝐲, ො𝐳 - unit polarisation vectors
E(x,t)

−
ℏ

4𝜋𝜀𝑐𝐴
∙

1

|𝑥 − 𝑥′|3/2



Part III: The Casimir effect



The Casimir effect
• Predicts a small attractive force 

between the walls of a cavity 
with flat reflecting sides. In 1D 
𝐹 ∝ 𝐷−2.

• Force generated by changes in 
the zero-point energy of the 
field inside the cavity.

• Calculations usually based on 
standing wave modes.

D

Questions: Can an alternative derivation be found in terms of local excitations? Does this 
method have any advantages?



Local photons inside a cavity

• Local photons interact only locally 
with their surroundings.

• At the mirror surfaces, local 
excitations are completely 
reflected resulting in a change of 
direction.

• When not in contact with the 
mirror, local excitations behave as 
if in free space

This motion impacts the propagation of the field 
near the cavity.  This produces a change in the 
vacuum energy of the field.



Cavity field observables
• The field  depends non-locally on the 

position of the local excitations. 
• The contribution to the field observables 

are also reflected at the boundaries.  
excitations outside cannot contribute to 
the field inside.

• Due to non-locality, the same field can 
contribute several times to the total field 
at the same position.

Inside cavity:

𝑂Cav 𝑥, 𝑡 = ෍

𝑛=−∞

∞

𝑂free 𝑥 + 2𝑛𝐷, 𝑡 ± 𝑂free(−𝑥 + 2𝑛 − 1 𝐷, 𝑡)

Either 𝑬(𝒙, 𝒕) or 𝑩(𝒙, 𝒕)



Zero-point energies
• The zero-point energy 0 𝐻energy 0 is the vacuum expectation value of 

the expression 

𝐻energy = ෍

𝑠𝜆

න

−𝐷/2

𝐷/2

𝑑𝑥
𝜀𝐴

2
𝐸cav(𝑥, 𝑡)2 + 𝑐2𝐵cav(𝑥, 𝑡)2

• Using the expressions for the fields in a cavity and the blip commutators we find that

𝐻ZPE =
ℏ𝑐

4𝜋
෍

𝑛=−∞

∞

න

−∞

∞

𝑑𝑥 න

−𝐷/2

𝐷/2

𝑑𝑥′ 𝑥 − 𝑥′ (𝑥 − 𝑥′ + 2𝑛𝐷) −3/2

= −
ℏ𝑐

2𝜋𝐷
෍

𝑛=−∞

∞
1

𝑛2
𝑛 is related to the difference in the 
number of reflections in the overlap.



The Casimir force
• The expression for the zero-point energy is infinite.  Nevertheless, the correction to the 

free ZPE can be determined.

• The 𝑛 = 0 term is the complete 
overlap between two excitations of 
the EM field.

• This is the free field contribution to 
the zero-point energy.

• Outside the cavity the zero-point 
energy is unchanged

• The difference is a finite correction.
• This leads to a finite and attractive 

force.

𝐻ZPE
free =

𝜀𝐴

4
෍

𝑠𝜆

න

−𝐷/2

𝐷/2

𝑑𝑥 1𝑠𝜆
field(𝑥, 𝑡) 1𝑠𝜆

field(𝑥, 𝑡)

𝐻ZPE
corr = −

ℏ𝑐

𝜋𝐷
෍

𝑛=1

∞
1

𝑛2
= −

ℏ𝑐𝜋

6𝐷

𝐹 = −
𝜕𝐻ZPE

corr

𝜕𝐷
= −

ℏ𝑐𝜋

6𝐷2



Comments and conclusions

• We introduced a notation for orthogonal excitations in the position representation.
• By specifying the direction of propagation, we double the usual number of degrees of 

freedom.  There are now negative as well as positive frequency states.
• A consequence of expanding the Hilbert space is that 𝐻dyn ≠ 𝐻energy. 

• There is a non-local relationship between the particles and the fields. This property is 
responsible for the Casimir effect.

• By modelling the local interactions between the mirrors and the local excitations, 
new field observables can be derived leading to a modified vacuum energy.  

• The resulting force is correct up to an overall factor of 2.  The result is dependent on 
the phase picked up by the fields at the mirror surface.

• This method does not require any form of regularisation to make the result finite.  
Infinities cancel naturally.    

Local Photons

Casimir effect



Thank you for your attention


