Status of SUSY searches in ATLAS

BSM 2023 | Hurghada, Egypt | 06-09 Nov 2023

Introduction

- Supersymmetry (SUSY): promising extension of the SM
 - Additional symmetry relating fermions and bosons
 - Provides natural solution to hierarchy problem -
 - Dark matter candidate (if R-parity is conserved) -
- SUSY parameter space is huge (SM +105 new parameters)
- Many new particles predicted, some of them can be in the LHC reachable energy
- We reduce the number of parameters to a more manageable number by focusing on very simplified models with well motivated assumptions
 - For example: RPC \rightarrow particles produced in pairs and LSP is stable (MET)
 - Limits on simplified models, not on SUSY

SUSY searches in ATLAS

- Comprehensive search programme
- Searches are final state oriented, driven by cross-section and event topology:
 - gluinos/squarks
 - stop/sbottom
 - electroweakinos and sleptons
- Conventional searches with RPC and prompt decays
- Unconventional searches including RPV and long-lived particles
- Combinations and phase space scans
- This talk will cover some of the most recent searches using the full Run-2 data

 $\rightarrow \sqrt{s} = 13 \text{ TeV}, \sim 139 \text{ fb}^{-1}$

General analysis strategy

- Signal regions (SR) motivated by SUSY model and enriched optimized to have a good signal/background significance
- SM background estimation/modeling
 - Data-driven estimation for fake backgrounds -
 - Monte Carlo simulation normalized in dedicated Control Regions (CR) -
 - Validation regions (VR) to cross-check estimation in between CR/SR
- Statistical interpretation using simultaneous likelihood fit
 - Discovery significance -
 - Exclusion limits at 95% CL using CR+SR combined fit for specific SUSY signal model as function of masses and or BR
 - Model independent limits on visible cross section -

observable 1

	Model	S	ignatur	e ∫.	<i>L dt</i> [fb ⁻	Mass limit	Reference
S	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_1^0$	0 <i>e</i> ,μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	[1×, 8× Degen.] 1.0 1.85 m($\tilde{\chi}_1^0$) [8× Degen.] 0.9 m(\tilde{q})-m($\tilde{\chi}_1^0$)	(400 GeV 2010.14293 0)=5 GeV 2102.10874
ive Searche	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	140	Forbidden 1.15-1.95 $m(\tilde{\chi}_1^0) =$) 1)=0 GeV 2010.14293 1000 GeV 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i>	2-6 jets		140	2.2 $m(\tilde{\chi}_1^0)$	<600 GeV 2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	<i>ee</i> , μμ	2 jets	E_T^{miss}	140	$2.2 \qquad m(\tilde{\mathcal{X}}_1^0)$	2204.13072
clus	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\chi_1^\circ$	0 <i>e</i> ,μ SS <i>e</i> ,μ	6 jets	E_T^{miss}	140 140	$\begin{array}{ccc} 1.97 & \mathbf{m}(\widetilde{\chi}_1^\circ) \\ 1.15 & \mathbf{m}(\widetilde{g}) \cdot \mathbf{m}(\widetilde{\chi}_1^\circ) \end{array}$:600 GeV 2008.06032 =200 GeV 2307.01094
Inc	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	140 140	2.45 $m(\tilde{\chi}_1^0)$ 1.25 $m(\tilde{\chi}_1^0)$:500 GeV 2211.08028 =300 GeV 1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 <i>b</i>	$E_T^{\rm miss}$	140	1.255 $m(\tilde{\chi}_1^0)$ 0.68 10 GeV < $\Delta m(\tilde{\chi}_1^0)$	<pre><400 GeV 2101.12527 ><20 GeV 2101.12527</pre>
rks ion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> ,μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss} \ E_T^{ m miss}$	140 140	Forbidden0.23-1.35 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0)$ 0.13-0.85 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_2^0, \tilde{\chi}_2^0, \tilde{\chi}_2^0) = 130 \text{ GeV}, m(\tilde{\chi}_2^0, \tilde{\chi}_2^0, \tilde{\chi}_2^0, \tilde{\chi}_2^0, \tilde{\chi}_2^0) = 130 \text{ GeV}, m(\tilde{\chi}_2^0, \tilde{\chi}_2^0$	=100 GeV 1908.03122 ⁰ ₁)=0 GeV 2103.08189
duci	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	$E_T^{\rm miss}$	140	1.25 m(/	⁰ ₁)=1 GeV 2004.14060, 2012.03799
n. s pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$	1 e, μ	3 jets/1 b	E_T^{miss}	140	Forbidden1.05	=500 GeV 2012.03799, ATLAS-CONF-2023-043
ge ect	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau G$	1-2 τ 0 e μ	2 jets/1 b	E_T^{miss} E^{miss}	140 26 1	Forbidden1.4 $m(\tilde{\tau}_1)$ 0.85 $m(\tilde{\tau}_1)$	⁰ 800 GeV 2108.07665
3 rd dir	$I_1I_1, I_1 \rightarrow c\chi_1 / cc, c \rightarrow c\chi_1$	0 <i>e</i> ,μ 0 <i>e</i> ,μ	mono-jet	E_T^{Tmiss}	140	0.55 $m(t_{1}, \tilde{c}) - m(\tilde{t}_{1}, \tilde{c}) - $)=0 GeV 1805.01649 1)=5 GeV 2102.10874
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0 \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e,μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	$E_T^{ m miss} \ E_T^{ m miss}$	140 140	0.067-1.18 $m(\tilde{\chi}_2^0)$ Forbidden 0.86 $m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{t}_1)$ - $m(\tilde{\chi}_1^0)$:500 GeV 2006.05880 = 40 GeV 2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu$	s ≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) = 0, \\ m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}, \end{array}$	<i>w</i> ino-bino 2106.01676, 2108.07586 wino-bino 1911.12606
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>		$E_T^{\rm miss}$	140	0.42 $m(\tilde{\chi}_1^0)=0,$	wino-bino 1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>	Multiple ℓ /jets	6	$E_T^{\rm miss}$	140	$\tilde{\chi}_2^0$ Forbidden $m(\tilde{\chi}_1^0)=70$ GeV,	wino-bino 2004.10894, 2108.07586
ot /	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via $\tilde{\ell}_L / \tilde{\nu}$	$2 e, \mu$		E_T^{miss}	140	1.0 $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\lambda}))$	$(1) + m(\tilde{\chi}_1^0))$ 1908.08215
EV lire	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \mathcal{X}_1$ $\tilde{\ell}_{\tau} = \tilde{\ell}_{\tau} = \tilde{\ell} \to \ell \tilde{\mathcal{Y}}_1^0$	2τ 2 e. μ	0 iets	E_T^{miss} E_T^{miss}	140 140	1'R, 'R,LJ 0.34 0.48	$m(\chi_1^0)=0$ AI LAS-CONF-2023-029 $m(\tilde{\chi}_1^0)=0$ 1908 08215
a	$\iota_{\mathrm{L},\mathrm{R}}\iota_{\mathrm{L},\mathrm{R}}, \iota \rightarrow \iota_{\mathrm{A}}$	ee, μμ	≥ 1 jet	E_T^{Tmiss}	140	0.26 $m(\tilde{\ell})\operatorname{-m}(\tilde{\chi}_1^0)$	=10 GeV 1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 <i>e</i> ,μ	$\geq 3 b$	E_T^{miss}	140 140	0.94	$\rightarrow h\tilde{G}$)=1 To appear
		$\begin{array}{c} 4 \ e, \mu \\ 0 \ e, \mu \end{array}$	≥ 2 large jet	s $E_T^{T_{miss}}$	140	$0.55 BR(x_1 BR(x_1$	$\rightarrow ZG)=1$ 2103.11684 $\rightarrow Z\tilde{G})=1$ 2108.07586
		2 <i>e</i> , <i>µ</i>	≥ 2 jets	$E_T^{\rm miss}$	140	0.77 $BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = BR(\tilde{\chi}_1^0 \to Z)$	$h\tilde{G}$)=0.5 2204.13072
7	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	140	0.66 0.21	ure Wino 2201.02472 higgsino 2201.02472
ive(Stable \tilde{g} R-hadron	pixel dE/dx		$E_T^{\rm miss}$	140	2.05	2205.06013
ng-l	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		$E_T^{\rm miss}$	140	$[\tau(\tilde{g}) = 10 \text{ ns}]$ 2.2 $m(\tilde{\chi}_1^0)$:100 GeV 2205.06013
-or pa	$\tilde{\ell}\tilde{\ell},\tilde{\ell}{ ightarrow}\ell\tilde{G}$	Displ. lep		E_T^{miss}	140	$\tilde{\mu}$ 0.7 $\tau(l)$	y = 0.1 ns 2011.07812 y = 0.1 ns 2011.07812
		pixel dE/dx		$E_T^{\rm miss}$	140	0.36) = 10 ns 2205.06013
	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ			140	$\tilde{f}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625 1.05	ure Wino 2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^{0} \rightarrow WW / Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> , <i>µ</i>	0 jets	E_T^{miss}	140	$\tilde{\chi}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m($\tilde{\chi}_{1}^{0}$)	200 GeV 2103.11684
RPV	$gg, g \to qq\chi_1, \chi_1 \to qqq$ $\widetilde{t}, \widetilde{t} \to t\widetilde{V}^0, \widetilde{V}^0 \to thc$		≥o jets Multinle		140 36 1	$[m(\mathcal{X}_1)=50 \text{ GeV}, 1250 \text{ GeV}] \qquad 1.6 \qquad 2.25$ $[\lambda''=2e-4, 1e-2] \qquad 0.55 \qquad 1.05 \qquad m(\tilde{\mathcal{X}}^0) = 0.00 \text{ GeV}]$	
	$\begin{array}{ccc} u, & i \to i \wedge 1, \wedge 1 \to i b s \\ \tilde{t}\tilde{t}, & \tilde{t} \to b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to b b s \end{array}$		$\geq 4b$		140	Forbidden 0.95 $m(\tilde{\chi}_1^{\pm}) = 200 \text{ GeV}$	500 GeV 2010.01015
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 <i>b</i>		36.7	[qq, bs] 0.42 0.61	1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, µ 1 µ	2 <i>b</i> DV		36.1 136	$\begin{bmatrix} 1e-10 < \lambda'_{uv} < 1e-8, 3e-10 < \lambda'_{uv} < 3e-9 \end{bmatrix} = \begin{bmatrix} 0.4-1.45 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.4-1.45 \\ BB(\tilde{t}_1 \rightarrow be) \\ BB(\tilde{t}_1 \rightarrow au) = 1009 \end{bmatrix}$	$b\mu$)>20% 1710.05544 b, $\cos\theta_{r}=1$ 2003.11956
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 <i>e</i> , μ	≥6 jets		140	0.2-0.32	higgsino 2106.09609

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Wide range of searches in ATLAS covering vast regions of SUSY phase space

ATLAS Supersymmetry Public Results

Mass scale [TeV]

Squarks and gluinos searches

- Analyses covering each corner of the phase space for different gluino/squark decay modes
- Masses excluded up to 1-2 TeV depending the model considered
- Weaker limits in the compressed region for neutralino LSP \rightarrow work ongoing to improve this with ML

Stop search: tt+MET

- Search for direct stop pair production with one lepton (from on-shell W), jets and high MET
- Orthogonal and inclusive event categories depending on number of *b*-jets and jets from top quarks
- Neural network to discriminate signal/background for each SR
- Exclusion limits
 - Neutralino up to 600 GeV from direct stop decays
 - Stop masses up to 1.1 TeV for low neutralino mass

Stop search: tc+MET

- Dropping assumption of minimal flavor violation allow stop and scharm mixing
 - mixed decays with one hadronic top, one charm jet and MET
 - Scan of BR($\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / t \tilde{\chi}_1^0$)
- Dedicated charm tagger with 20% c-tag efficiency
- DNN top tagger to identify large-R jets from top decays
- Final state kinematics very dependent on mass splitting
 - 4 orthogonal SRs
 - ISR jet used for compressed region
- Top squark masses excluded up to 800 GeV for light neutralinos and 600 GeV for degenerate case

Electroweak searches with one lepton

- Single isolated lepton (e/μ) , jets and MET
- Three sets of SRs targeting the 3 production/decay models
- WW/WZ channels:
 - One lepton and 3 jets
 - W and Z tagging
- Wh channel:
 - 2 b-jets to identify Higgs boson
 - BDT as final discriminant -----
- Backgrounds from MC with CRs

Electroweak searches with one lepton

Electroweak with taus: direct $\tilde{\tau}$

- Search for direct left and/or right handed stau production decaying to tau and LSP 100% of the time
- Mass degenerate or non-degenerate $\tilde{\tau}_{L,R}$
- 4 BDT models trained for different mass spaces
 - QCD multijets background data-driven
 - W/Z+jets and top backgrounds normalized in CRs
- Extended sensitivity to 480 GeV for $\tilde{\tau}_{L,R}$

Electroweak higgsinos with multi b-jets

- Production of higgsinos decaying to h(bb)h(bb) + MET in GMSB models
- New method for pairing *b*-jets into Higgs boson candidates, improved jet reconstruction and b-tagging, MVA techniques
- Two complementary analyses:

Low higgsino mass (<250 GeV)

- Low MET (*b*-jet triggers) -----
- Four or more *b*-jets to reconstruct Higgs bosons -
- QCD multijet and $t\bar{t}$ estimated using ABCD method

<u>High higgsino mass (>250 GeV)</u>

- High MET (MET based triggers)
- At least 3 *b*-jets
- Z+jets and $t\bar{t}$ CR and QCD multijet data-driven
- BDT signal/background discrimination
- Higgsino masses excluded up to 940 GeV for 100% $BR(\rightarrow h\tilde{G})$

Electroweak combination

- Statistical combination of wino/higgsino searches using various decay channels via W, Z and h
- Analyses harmonized to allow the statistical combination
 - Different lepton multiplicity
- Mass reach extended
 30-100 GeV
- Cross section limit improved by up to 40%

ATLAS-CONF-2023-046

√s=13 TeV, 139 fb⁻¹

All limits at 95% CL

Combination Observed Limit (±1 σ_{theory}^{SUSY}) Expected Limit (±1 σ_{exp})

ndividual Analyses — Observed Limit – Expected Limit

2L Compressed arXiv:1911.12606 3L off-shell arXiv:2106.01676 3L on-shell arXiv:2106.01676 All Hadronic arXiv:2108.07586 2L2J arXiv:2204.13072 1L ATLAS-CONF-2022-059

√s=13 TeV, 139 fb⁻¹

- All limits at 95% CL
- Combination
- Observed Limit (±1 σ^{SUSY}) Expected Limit
- $(\pm 1 \sigma_{exp})$

Individual Analyses

- Observed LimitExpected Limit
- 4L arXiv:2103.11684
- 2L2J arXiv:2204.13072
- All Hadronic arXiv:2108.07586
- Multi-b ATLAS-CONF-2023-048

Electroweak pMSSM Scan

- LHC exclusion limits on "simplified models"
 - → not exhaustive exploration of MSSM
- Phenomenological MSSM:
 - CP-conserved, R-parity conservation, minimal flavour violation
 - SUSY parameter space reduced to 19 parameters
- pMSSM electroweak parameter space randomly scanned
 - General EWKino scan
 - Bino-DM scan
- Using eight Run-2 electroweak ATLAS analyses
 - + BR($h \rightarrow inv$) < 0.107, m(A) > 480 GeV
- Constraints from previous EWK, flavour and DM related measurements are considered

Electroweak pMSSM General Scan

Electroweak pMSSM Bino-DM Scan

- Bino-like LSP models typically overestimate the relic dark matter density
- Additional annihilation mechanisms are required:
 - compress mass splitting between LSP and $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$
 - Z/h funnel regions where LSP mass is half of the Z/H mass
- Special scan with $|M_1| < 500$ GeV to focus on low-mass bino models
- Z/h funnel region almost completely excluded by ATLAS Run-2 data

 $m(\tilde{\chi}_1^0)$ [GeV]

RPV Multijet search

- Dropping R-parity conservation assumptions,
 UDD RPV coupling leads to decays to quarks
 → pure multijet final state
- Main challenge: massive QCD multi jet background

Jet counting analysis

- SRs depending on number of jets, energy isotropy and number of b-tags

ATLAS-CONF-2023-049

Mass resonance analysis

- NN model to reconstruct gluino mass and bump hunt

RPV Multijet results

- Data consistent with background expectation in all the SRs
- Improved limits thanks to the new analysis techniques

Cascade decay - Jet counting

Long-lived heavy particles

- Hypothetical massive charge long-lived particles move significantly slower than c and can be identified as:
 - Isolated high momentum track with large ionisation energy loss (dE/dx) measured in the pixel detector
 - Significantly slower as measured by the calorimeter time-of-flight
- Main observable is the mass of the particle associated to the track $m \equiv p/\beta\gamma$
- Constraints on SUSY pair production of long-lived *R*-hadrons and staus
- Agreement with background expectation

 \rightarrow 6 observed, 3.7 ± 0.4 expected

- Most stringent limits to date for detector unstable LLPs in the LHC for lifetime range above 10 ns

Summary

- Comprehensive ATLAS SUSY search programme using the full Run-2 data from LHC
 - and unconventional signatures
 - Find all the ATLAS SUSY results <u>here</u>
- For the moment good agreement between observed data and SM expectation in all final states
 - Stringent limits on several simplified models -
 - Chargino/neutralino mass excluded up to ~1 TeV
 - First limits set on $m(\tilde{\tau}_R)$ at the LHC
- Results with LHC Run-3 data are coming not only including more data:
 - More sophisticated ML techniques improving object reconstruction/identification and also signal and background discrimination
 - More combinations and SUSY parameter scans

- Probing large part of the SUSY phase space including very difficult final state signatures with compressed scenarios

- More public data for re-interpretation: model independent limits, code snippets, likelihoods (<u>https://www.hepdata.net</u>)

Backup slides

Stop search: tt+MET

Stop search: tc+MET

Electroweak with one lepton

Electroweak with one lepton

Electroweak with taus: direct $\tilde{\tau}$

Electroweak with taus: intermediate stau/Wh

Electroweak with taus: intermediate $\tilde{\tau}$ /Wh

- Two hadronically decaying taus, low jet activity and large MET (from neutralinos and neutrinos)
- Neutralino/chargino production
 - decaying to LSP through intermediate staus or tau sneutrinos with same BR
 - decaying through W and Higgs boson

RPV Multijet neural network

RPV Multijet: Results in SR

pMSSM Interpretation: external constraints

Category	Constraint	Lower bound	Upper bound	Notes
Flavour	$BR(b \to s\gamma)$ $BR(B_s \to \mu\mu)$ $BR(B^+ \to \tau\nu)$	3.11×10^{-4} 1.87×10^{-9} 6.10×10^{-5}	3.87×10^{-4} 4.31×10^{-9} 1.57×10^{-4}	2022 PDG average [58] Most recent LHCb result [59] 2022 PDG average [58]
Precision EWK	$\Delta\! ho$	-0.0004	0.0018	Updated global electroweak fit by GFitter group [60] (not including CDF W-mass measurement [61])
	$\Gamma_{\rm inv}(Z)$		2 MeV	Precision electroweak measurements on the Z -resonance from experiments at the SLC and LEP colliders [62].
	m(W)	80.347 GeV	80.407 GeV	2022 PDG result (excluding CDF W-mass measurement [61]) [58] but with the 2σ window expanded by 6 MeV to allow for uncertainty due to the top-quark mass in the MSSM Higgs calculation [63]
Dark matter	Relic density Direct detection $\sigma_{ m Spin-independent}$ Direct detection $\sigma_{ m Spin-dependent}$		0.12	Latest bound from Planck [64] Exclusion contour on direct-detection of DM from the LZ collaboration [65] Exclusion contour on direct-detection of DM from PICO-60 [66]

pMSSM Interpretation: Analyses

Table 5: EWK analyses considered in this work.

Analysis	Simplified models ta
FullHad [24]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ ,
	GGM
1Lbb [<mark>15</mark>]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh
2L0J [19]	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ via WW
2L2J [25]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ ,
3L [23]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ ,
4L [22]	Higgsino GGM
Compressed [20]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ ,
Disappearing-track [27]	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_1^\pm \tilde{\chi}_1^-$

rgeted

Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via *Wh*, Wino $\tilde{\chi}_1^{+} \tilde{\chi}_1^{-}$ via *WW*, Higgsino

', slepton pairs Higgsino GGM Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via *Wh*, Higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$, Higgsino GGM Higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

pMSSM Interpretation: Scan

Parameter	min	max	Note			
$ \begin{array}{c} M_{\tilde{L}_{1}} (=M_{\tilde{L}_{2}}) \\ M_{\tilde{e}_{1}} (=M_{\tilde{e}_{2}}) \\ M_{\tilde{L}_{3}} \\ M_{\tilde{e}_{3}} \end{array} $	10 TeV 10 TeV 10 TeV 10 TeV	10 TeV 10 TeV 10 TeV 10 TeV	Left-handed slepton (first two gens.) mass Right-handed slepton (first two gens.) mass Left-handed stau doublet mass Right-handed stau mass	Scan name	EWKino	Bino-D
$ \begin{array}{c} $	10 TeV 10 TeV 10 TeV	10 TeV 10 TeV 10 TeV	Left-handed squark (first two gens.) mass Right-handed up-type squark (first two gens.) mass Right-handed down-type squark (first two gens.) mass	$ M_1 \text{ range}$ LSP type	0 – 2 TeV Neutralino	0 – 500 C Bino-like ner
$M_{ ilde{Q}_3} (-M_{ ilde{d}_2})$ $M_{ ilde{U}_3}$ $M_{ ilde{d}_3}$	2 TeV 2 TeV 2 TeV 2 TeV	5 TeV 5 TeV 5 TeV 5 TeV	Left-handed squark (third gen.) mass Right-handed top squark mass Right-handed bottom squark mass	Number of models generated: Sampled Successful generation Correct LSP typePass DM relic density constraint $\Omega h^2 \leq 0.12$ Pass LEP chargino mass constraint	20,000	437,50
$ \begin{array}{c} M_1 \\ M_2 \\ \mu \\ M_3 \end{array} $	-2 TeV -2 TeV -2 TeV 1 TeV	2 TeV 2 TeV 2 TeV 5 TeV	Bino mass parameter Wino mass parameter Bilinear Higgs mass parameter Gluino mass parameter		15,321 N/A 13,969	286,26 11,12 10,17
A_t A_b A_{τ} M_A $\tan \beta$	-8 TeV -2 TeV -2 TeV 0 TeV 1	8 TeV 2 TeV 2 TeV 5 TeV 60	Trilinear top coupling Trilinear bottom coupling Trilinear τ lepton coupling Pseudoscalar Higgs boson mass Ratio of the Higgs vacuum expectation values	120 GeV < m(h) < 130 GeV	12,280	8,897

pMSSM Interpretation

- Only models passing all external constraints

Long-lived particles search

Long-lived particles search

Long-lived particles search

Summary plots

Summary plots

