[2310.10471]

Pair production of Higgs boson in composite two Higgs doublet model

Kodai Sakurai (U. of Warsaw/Tohoku U.)

In collaboration with

Stefania De Curtis^A, Luigi Delle Rose^B, Felix Egle^C,

Margarete Mühlleitner ^C, Stefano Moretti ^{D,E}

^A: U. of Florence, ^B: Calabria U., ^C: KIT, ^D: U. of Southampton, ^E: Uppsala U

BSM-2023 Nov. 6th-9th, Hurghada, Eygpt

The shape of the Higgs potential is unknown

- After the discovery of the Higgs boson, the properties are measured in LHC experiments.
- What we know currently about the Higgs potential are two things:
 - Position of the EW minimum
 - The curvature of the potential around the minima.
 - The hhh coupling is not measured accurately.

$$V(h) = \frac{1}{2}m_h^2h^2 + \lambda_{hhh}h^3 + \lambda_{hhhh}h^4$$

→ The shape of the potential away from the minima is not determined.

Kodai Sakurai

Determination of the shape of Higgs potential

Determination of the shape of Higgs potential is a key to find New physics.

• We may restrict the shape of the Higgs sector.

• How EWSB occurs (1st OPT GWs).

V

ISM

Di-Higgs production process

- λ_{hhh} appears in di-Higgs production process. Dominant one is $gg \to hh$

- Through λ_{hhh} , interference can change much.
- Predictions of di-Higgs boson should be prepared in various extended Higgs models to compare experiments such as LHC Run 3 HL-LHC.

Motinvation of this study

 We discuss the theoretical behavior of di-Higgs production cross section in the composite two-Higgs doublet model.

- One has additional vector-like fermion loops (T_i) and heavy CPeven Higgs boson (H) as new physics effects.
- Open questions:

How match these new physics effects can enhance $\sigma_{pp \to hh}$? How the prediction for $\sigma_{pp \to hh}$ can be changed from E2HDM?

Setup: Composite two Higgs doublet model

• Group structure: $\frac{\mathcal{G}}{\mathcal{H}} = \frac{\mathrm{SO}(6)}{\mathrm{SO}(4) \times \mathrm{SO}(2)}$,

[S. De Curtis, et al, JHEP 12 (2018) 051]

[See the details in the slide by S. Moretti]

8 (=15-7) broken SO(6) generators exist. We have 8 NGBs, which corresponds to Higgs fields in 2HDM.

- How is the mass of the Higgs boson generated?
 - The explicit breaking of SO(6) is required.

For gauge sector, gauging EW subgroup breaks SO(4)×SO(2). For fermion sector, explicit breaking terms are introduced

- The Coleman-Weinberg potential is generated:

Setup: Composite two Higgs doublet model

$$\mathscr{L}_{C2HDM} = \mathscr{L}_{elementary} + \mathscr{L}_{mixing} + \mathscr{L}_{resonances}$$

$$\mathscr{L}_{resonances}: \text{ contains NGBs and heavy resonances.}$$
It involves the interactions between them with suppression 1/f.

 $\mathscr{L}_{\text{elementary}}$: constructed by W^a_μ , q_L and q_R . It involves kinetic terms.

 $\mathscr{L}_{\rm mixing}\!\!:$ gives int. between $\mathscr{L}_{\rm elementary}$ and $\mathscr{L}_{\rm ressonance}\!\!:$

Setup: Composite two Higgs doublet model

$$\mathscr{L}_{\rm mixing}:$$
 gives int. between $\mathscr{L}_{\rm elementary}$ and $\mathscr{L}_{\rm ressonance}$.

EX.) fermion sector (U: Higgs field ψ : VL fermion)

$$\mathscr{L}_{\text{mixing}} = y_L^{ij} f \bar{q}_L^i U \cdot (\psi^I)^j + \tilde{y}_L^{ij} f \bar{q}_L^i U \cdot (\psi^\alpha)^j + (q_L \to u_R, d_R, l_L, e_R)$$

- It explicitly breaks SO(6).
- It generates Yukawa int. masses of fermions

8 heavy top partners (T_i) are introduced.

Higgs pair production

$$\frac{d\hat{\sigma}(gg \rightarrow hh)}{d\hat{t}} = \frac{\alpha_s^2}{512(2\pi)^3} \times \left[\left| \sum_{i=1}^{n_q} C_{i,\triangle}^{hh} F_{\triangle}(m_i) + \sum_{i=1}^{n_q} \sum_{j=1}^{n_q} \left(C_{ij,\square}^{hh} F_{\square}^{hh}(m_i, m_j) + C_{ij,\square,5}^{hh} F_{\square,5}^{hh}(m_i, m_j) \right) \right|^2 \right]$$

$$+ \left| \sum_{i=1}^{n_q} \sum_{j=1}^{n_q} \left(C_{ij,\square}^{hh} G_{\square}^{hh}(m_i, m_j) + C_{ij,\square,5}^{hh} G_{\square,5}^{hh}(m_i, m_j) \right) \right|^2 \right] ,$$
Spin-2 contributions

- Corresponding diagrams

- Heavy mass limit [T. Plehn, M. Spira, P. M. Zerwas, Nucl.Phys.B 479 (1996) 46]

$$F_{\Delta} \to \frac{s}{m_T} \frac{2}{3}, \ F_{\Box} \to -\frac{s}{m_T^2} \frac{2}{3}, \ G_{\Box} \to \mathcal{O}(\frac{s^2}{m_T^4}),$$
 Spin-0 cont. is dominant.

Scan analysis

- We scan the composite parameters by applying the following constraints:
 - Correct global EW minimum, m_t
 - Perturbativity for λ_i
 - LHC bounds for H, A, H^\pm and h
 - $\sigma_{pp \to hh}$ through resonant seacrh
- We consider the two regime:

Resonant case :
$$\frac{\sigma(gg \to H) \times BR(H \to hh)}{\sigma(gg \to hh)} > 0.1$$
, and $\Gamma_H/m_H < 5\%$

Nonresonant case :
$$\frac{\sigma(gg \to H) \times BR(H \to hh)}{\sigma(gg \to hh)} < 0.1$$
 or $m_H < 2m_h$

Parameter	Range	
-	Lower	Upper
m _H	180 GeV	3 TeV
$m_{T,8}$	1300 GeV	23 TeV
$m_{T,1}$	2700 TeV	80 TeV
$\lambda_{hhh}/\lambda_{SM}$	0.7	1.07
ghtt/ghtt,SM	0.73	1.33

Influence of Heavy top partner loop contributions

- Heavy top partner gives destractuive and constructive contributions.
- T_i contributions have influence when $\sigma^{hh}/\sigma^{hh}_{SM} \sim 0.5$ -2.

Size of σ in resonant and non-resonant cases.

Non-resonant case

[De Curtis, Delle Rose,

Egle, Mühlleitner, Moretti, KS]

Full result

Resonant case 10^{-1} SM BP 3: $m_H = 1182 \,\text{GeV},$ $m_{T_8} = 1358 \, \text{GeV}$ $m_{T_7} = 1583 \, \text{GeV},$ $m_{T_6} = 1615 \, \text{GeV}$ 10^{-2} $\Gamma_H/m_H = 5.42\%, \quad \sigma_{\rm tot}/\sigma_{\rm SM} = 1.5$ only top, no $G_{hhT_iT_i}$ 10^{-3} full result $d\sigma/dd \int d\sigma/dd \int d\sigma/dd$ 10^{-7} 10^{-8} 10^{-9} 2000 3000 5000 1000 4000 0 [GeV]Q

Kodai Sakurai

Pair production of Higgs boson in composite two Higgs doublet model

Full result

3000

Full result

Pair production of Higgs boson in composite two Higgs doublet model

Full result

Pair production of Higgs boson in composite two Higgs doublet model

Comparison with elementary 2HDM

- The maximum of the σ^{hh}_{C2HDM} is close to type-I.
- Γ_{H}^{C2HDM} glows in $m_{H} \gg v$ because of $H \to tT_{i}$.

Comparison with elementary 2HDM

- The maximum of the σ^{hh}_{C2HDM} is close to type-I.
- Γ_H^{C2HDM} glows in $m_H \gg v$ because of $H \to tT_i$.

Difference in σ^{hh} or in Γ_H may distinguish C2HDM from E2HDM

- We studied di-Higgs production process in C2HDM.
- Heavy CP-even Higgs (H) and heavy top partner (T_i) give additional contributions to the process.
- These two effects are basically complementary. They become important in different parameter spaces.
- By precision measurements of di-Higgs production, one can get a clue to find compositeness.

Back up

Effective lagrangian

For $pp \rightarrow hh$, interactions for top and Higgs are only needed.

$$\mathcal{L}_{\text{Yuk}} = -G_{h\bar{T}_iT_j}\bar{T}_{Li}T_{Rj}h - G_{H\bar{T}_iT_j}\bar{T}_{Li}T_{Rj}H + \text{h.c.}$$
$$-G_{hhT_iT_i}\bar{T}_iT_ih^2 - G_{HHT_iT_i}\bar{T}_iT_iH^2 + \cdots,$$

$$\begin{aligned} \mathcal{L}_{\text{scalar}}^{\text{int}} &= -\frac{1}{3!} \lambda_{hhh} h^3 - \frac{1}{2} \lambda_{hhH}^{(1)} h^2 H \\ &+ \frac{v}{3f^2} (s_\theta \partial_\mu h + c_\theta \partial_\mu H) (H \partial^\mu h - h \partial^\mu H) + \cdots , \\ &\equiv \lambda_{hhH}^{(2)} h h H + \lambda_{hHH}^{(2)} h H H \end{aligned}$$

The couplings G_{hhTT} , G_{HHTT} , $\lambda_{hhH}^{(2)}$, $\lambda_{hHH}^{(2)}$ appears due to nonlinearlities.

Kodai Sakurai

$b \rightarrow s \gamma constraint$

- Green points are allowed by current direct and indirect searches at the LHC.
- By taking $\xi_b = 0.1 \xi_t$, the constraint becomes weaker.

Lagrangian of the strong sector for spin-1/2 resonances Ψ_I

$$\begin{aligned} \mathcal{L}_{\text{strong}}^{\text{ferm}} + \mathcal{L}_{\text{mix}}^{\text{ferm}} &= \bar{\Psi}^{I} i D \!\!\!/ \Psi^{I} + [-\bar{\Psi}^{I}_{L} M^{IJ}_{\Psi} \Psi^{J}_{R} - \bar{\Psi}^{I}_{L} (Y_{1}^{IJ} \Sigma + Y_{2}^{IJ} \Sigma^{2}) \Psi^{J}_{R} \\ &+ (\Delta^{I}_{L} \bar{q}^{\mathbf{6}}_{L} \Psi^{I}_{R} + \Delta^{I}_{R} \bar{t}^{\mathbf{6}}_{R} \Psi^{I}_{L})] + \text{h.c.}, \end{aligned}$$

$$\begin{split} \Sigma &= U \Sigma_0 U^T \\ U &= e^{i\frac{\Pi}{f}}, \quad \Pi \equiv \sqrt{2} \phi_i^{\hat{a}} T_i^{\hat{a}} = -i \begin{pmatrix} 0_{4 \times 4} & \mathbf{\Phi} \\ -\mathbf{\Phi}^T & 0_{2 \times 2} \end{pmatrix}, \quad \Phi_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_i^{\hat{2}} + i\phi_i^{\hat{1}} \\ \phi_i^{\hat{4}} - i\phi_i^{\hat{3}} \end{pmatrix} \\ q_L^{\mathbf{6}} &= \frac{1}{\sqrt{2}} \begin{pmatrix} ib_L \\ b_L \\ it_L \\ -t_L \\ 0 \\ 0 \end{pmatrix}, \quad t_R^{\mathbf{6}} &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ c_{\theta_i} \\ is_{\theta_i} \end{pmatrix} t_R, \quad \Psi = \begin{pmatrix} \psi_4 \\ \psi_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} iB_{-1/3} - iX_{5/3} \\ B_{-1/3} + X_{5/3} \\ iT_{2/3} + iX_{2/3} \\ -T_{2/3} + X_{2/3} \\ \sqrt{2}\tilde{T}_1 \\ \sqrt{2}\tilde{T}_2 \end{pmatrix}, \end{split}$$

- To ensure the finiteness of the effective potential, two spices of Ψ_i are needed.
- The mixing angle θ_t is chosen as $\theta_t = 0$ to insure the CP conservation.

Kodai Sakurai

Lagrangian of the gauge sector

$$\begin{aligned} \mathcal{L}_{\text{C2HDM}}^{\text{gauge}} &= \frac{f_1^2}{4} \text{Tr} |D_{\mu} U_1|^2 + \frac{f_2^2}{4} \text{Tr} |D_{\mu} \Sigma_2|^2 - \frac{1}{4g_{\rho}^2} (\rho^A)_{\mu\nu} (\rho^A)^{\mu\nu} - \frac{1}{4g_{\rho_X}^2} (\rho^X)_{\mu\nu} (\rho^X)^{\mu\nu} \\ &- \frac{1}{4g_A^2} (A^A)_{\mu\nu} (A^A)^{\mu\nu} - \frac{1}{4g_X^2} X_{\mu\nu} X^{\mu\nu}, \end{aligned}$$

$$\begin{split} D_{\mu}U_1 &= \partial_{\mu}U_1 - iA_{\mu}U_1 + iU_1\rho_{\mu}, \\ D_{\mu}\Sigma_2 &= \partial_{\mu}\Sigma_2 - i[\rho_{\mu}, \Sigma_2], \end{split} \qquad \qquad \Rightarrow A_{\mu} \equiv A_{\mu}^A T^A + X_{\mu}T^X \\ \rho_{\mu} \equiv \rho_{\mu}^A T^A + \rho_{\mu}^X T^X \end{split}$$

 ρ_A and ρ_X are spin-1 resonances

 T_A and T_X are geberator of SO(6) and U(1)_X

Kodai Sakurai

Scan range of the composite parameters

$$f = [700, 3000] \text{ GeV}, \quad g_{\rho} = [2, 10]$$

 $\Delta_{L,R}^{I} = [-10, 10] \times f, \quad Y_{1,2}^{IJ} = [-10, 10] \times f$

Branching ratios of the heavy Higgs boson H

Kodai Sakurai

Pair production of Higgs boson in composite two Higgs doublet model