

Summary

- Double beta decay overview
- Cryogenic calorimeters for the $0\nu\beta\beta$ decay search
- CUORE experiment
- Data acquisition and analysis
- Recent results on the search for $0\nu\beta\beta$ decay in ¹³⁰Te
- Other rare decays search and analyses with CUORE
- Conclusions and perspectives

Double beta decay

 $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_e$ 2*νββ*

- Allowed in the Standard Model only for *even-even* nuclei $(\Delta L = 0)$
- Observed in several nuclei, 76Ge,82Se,100Mo,136Xe, …
-
- Half-life $T_{1/2}^{2\nu}$ 1/2 $\sim 10^{18} - 10^{22}$ yr $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\mathcal{K}$

0*νββ*

- Beyond the Standard Model: lepton number symmetry violation ($\Delta L = 2$)
- Simplest model: Majorana *ν*
- No evidence observed so far
- Half-life $T^{0\nu}_{\nu\rho}$ 1/2 $> 10^{24} - 10^{26}$ yr

Lepton asymmetry could play an important role in the *matter-antimatter asymmetry* in the Universe

The importance of 0*νββ* for particle physics and cosmology

 $\sqrt{2}$

• Any observation would provide information on the neutrino *mass scale* and *ordering*

$$
\Gamma_{0\nu\beta\beta} \propto G_{0\nu}(Q, Z) \left| M_{0\nu} \right|^2 \frac{|M_{0\nu}|^2}{m_e^2}
$$
\n\nPhase space factor\n\nNuclear matrix element\n
$$
\begin{aligned}\n &\text{Effective Majorana mass} \\
&|< m_{\beta\beta} > | = \sum U_{ei}^2 m_i\n\end{aligned}
$$

i=1,2,3

-
- Assuming the exchange of a light Majorana neutrino the $0\nu\beta\beta$ decay rate is

The experimental sensitivity is

$$
S_{T_{1/2}}^{0\nu} \propto \sqrt{\frac{M \cdot T}{b \cdot \Delta E}}
$$
 [for negligible background $S_{T_{1/2}}^{0\nu}$

Experimental search for 0*νββ* decay

- Scalability of the technique to achieve high *exposure*, which means high mass and time stability
- Minimum *background*
- High resolution to distinguish the signal peak
- Wise choice of the *isotope* (isotopic abundance and *γ*, *α* background)

Cryogenic calorimeters represent a mature and competitive technology in the field of $0\nu\beta\beta$ decay search as demonstrated by several detectors (CUORE, CUPID-0, CUPID-Mo, AMORE)

Fundamental requirements for 0*νββ* decay experiments are:

The CUORE collaboration

27 Institutions from 4 different countries: China, France, Italy and USA

Further information is available on our website: https://cuore.Ings.infn.it

Cryogenic Underground Observatory for Rare Events

- Scientific goal: search for $0\nu\beta\beta$ decay of ¹³⁰Te (isotopic fraction ~34%, Q_{BB} ~2528 keV, only ²⁰⁸Tl γ line @ 2615 keV above)
- Tonne-scale detector: 988 (nat)TeO₂ crystals arranged in 19 towers and operated at \sim 10 mK $TeO₂$ mass is 742 kg (206 kg of $130Te$)
- Underground at the LNGS (Abruzzo, Italy)

The CUORE experiment in a nutshell

[TAUP 2023 results](https://indico.cern.ch/event/1199289/contributions/5447112/)

Effective 2nd tonne \cdot yr (TY) **FWHM** at $Q_{\beta\beta} = (7.26^{+0.43}_{-0.47}) \text{ keV}$

2nd TY Background index in the ROI: 1.30(3) · 10-2 counts/keV/kg/yr

 10^{-3}

 10^{-4}

Frequency (Hz)

The CUORE experiment challenge: cryostat, radiation shielding and noise abatement

- Cryogen free dilution cryostat
- Strict constraints on the materials radiopurity and mechanical stability

 10^{-1}

 10^{-5}

Cryogenic calorimeters for rare decays search

-
-

Data taking with CUORE

- Data split in *datasets*: 1-2 months of physics data bookended by calibration
- Typical trigger rate 50 mHz in calibration, 6 mHz during physics runs ∼
- Voltage across NTD Ge thermistors continuously sampled at 1kHz, we use a software trigger that is applied offline
- Data taking started in 2017, 2017-2019: several optimization campaigns
- Since march 2019 steady data taking with > 90% uptime in stable temperature conditions
- Average data taking rate of ~50 kg·yr/month

Data processing in CUORE

11

accelerometers, seismometers

Data processing in CUORE

Event selection for the 0*νββ* decay search

Anti-coincidence (AC) selection

From MC simulations, we expect ~88% of $0\nu\beta\beta$ events to release all the energy in the same crystal in which the decay occurred. Thus, we reject multi-site events, i.e. events with *Multiplicity* >1

Voltage (mV) -3500 -4000 -4500

ROI blinding

To avoid biasing our result, we exchange events from 208Tl line at 2615 keV with events at the 130Te 0*νββ* Q-value

Detector response evaluation

- We extract the detector response on events from the 208Tl line at 2615 keV in calibration data separately for each bolometer and dataset
- The signal peak is modeled as a sum of 3 Gaussians
- We fit the most prominent γ lines in physics data to

The 2nd tonne ⋅ yr CUORE data

We find no evidence of $0\nu\beta\beta$ and set a new limit on ¹³⁰Te half-life of $T^{1/2}_{0\nu\beta\beta} > 2.7 \cdot 10^{25} \text{ yr}$ (90 % C . I.)

The search for $0\nu\beta\beta$ decay with 2nd tonne • yr data

We perform an unbinned Bayesian fit with $\Gamma_{0\nu\beta\beta} > 0$ Systematics are treated as nuisance parameters

We measure an average background index of $b = (1.30 \pm 0.03) \cdot 10^{-2} (\text{counts/keV/kg/yr})$

We model the region of interest (2465, 2575) keV with

- linear background
- 60Co sum peak at 2505.7 keV
- posited peak at 2528 keV for the signal

Our median exclusion sensitivity is $T_{0\nu\beta\beta}^{1/2} = 3.1 \cdot 10^{25}$ yr (90 % C.I.)

Combine 1st and 2nd tonne ⋅ yr data to extract a result

We combine our new result from the analysis of the 2nd tonne • yr (2nd TY) data with our limit from the 1 tonne yr data (1 TY) [*[Nature 604, 53-58 \(2022\)](https://www.nature.com/articles/s41586-022-04497-4)*] ⋅

The overall exposure is $2023 \text{ kg} \cdot \text{yr}$ We find no evidence of 0*νββ* and set a limit on the decay rate The corresponding limit on 130Te half-life is $\Gamma_{0\nu\beta\beta}$ < 2.1 · 10⁻²⁶ yr⁻¹ (90 % C.I.) $T_{0\nu\beta\beta}^{1/2} > 3.3 \cdot 10^{25}$ yr (90 % C.I.)

Next steps towards the final 2 tonne ⋅ yr data analysis

- Reprocess the I tonne \cdot yr data with the new analysis chain that includes the denoising algorithm to mitigate vibrational noise
- Repeat the fit on the $0\nu\beta\beta$ candidate events extracted from the *full* CUORE statistics
- Finalise the study of systematic effects
- Release a final result on the 2TY CUORE data analysis

Stay tuned!

130Te $\beta\beta$ decay to the 1st 0^+ excited state

Latest results from the CUORE experiment - Alice Campani on behalf of the CUORE collaboration, BSM 2023 - Hurghada, 9/11/2023

Other *ββ* decay searches with CUORE

Other interesting analyses beyond double beta decay

- Detailed thermal model of our detector response [JINST 17 P11023 \(2022\)](https://iopscience.iop.org/article/10.1088/1748-0221/17/11/P11023/meta)
- Denoising techniques in CUORE analysis *Coming soon!*
- Study of environmental vibrational sources in CUORE: how marine microseisms affect our detector response *Coming soon!*
- Low energy analyses: dark matter searches (WIMPs, solar axions,…) *Coming soon!*
- CUORE background model (background budget for CUPID) *Coming soon!*

Conclusions and perspectives

- CUORE proved the scalability of the cryogenic calorimeters technique to tonne-scale detectors thereby paving the way to rare decay searches with cryogenic calorimeters
- We exceeded 2 tonne yr TeO₂ analyzed exposure and data collection is proceeding smoothly
- Our goal (2025) is to reach a final 3 tonne · yr TeO₂ exposure (corresponding to ~1 tonne · yr ¹³⁰Te)
- We found no evidence of $0\nu\beta\beta$ decay with 2023 kg · yr TeO₂ exposure
- Many interesting activities and results in $\beta\beta$ decay searches and beyond
- Important feedback for the CUPID project that will come after CUORE, both for the cryogenic system and background budget

Thank you on behalf of the CUORE collaboration

