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Scalar-Vector-Tensor Decomposition

In a universe largely dominated by isotropy and homogeneity, small
density fluctuations induces small deviation from FRW

ds2 = ((0)gµν + δgµν)dxµdxν

(0)gµν ≡ ηµνa(η) and δgµν �(0) gµν . Perturbations can be conveniently
split into

δg00 = 2a2φ

δg0i = a2(B,i − Si )

δgij = a2(2ψδij + E,ij + 2F(i,j) + hij )

1 Scalars: 4 DOF encoded in {φ,B, ψ,E} (2 are physical).

2 Vectors: 4 DOF encoded in two divergence-free vectors {Fi ,Si} (2
are physical).

3 Tensor: 2 DOF encoded in the traceless, transverse hij
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Gauge fixing

After fixing the coordinates, four DOF can be eliminated i.e. in
longitudinal gauge B = E = 0 and Vi = Si − Ḟi ;

g00 = −a2(t)(1 + 2ψ(1) + ψ(2))

g0i = 0

gij = a2(t)
[
(1− 2φ(1) − φ(2))δij +

1

2

(
∂iχ

(2)
j + ∂jχ

(2)
i + χ

(2)
ij

)]
the goal is to solve Einstein field equations resulting from these small
perturbations order by order;

δGµν = δTµν
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First-order perturbations

1 Scalar perturbations: they are related to density perturbations and
explain structure formation and CMB anisotropy.

∂i∂
iψ − 3H(ψ̇ + Hφ) = 2a2δ(1)T 0

0

(ψ̇ + Hφ),i = 2a2δ(1)T 0
i[

ψ̈ + H(2ψ̇ + φ̇) + (2Ḣ + H2)φ+
1

2
∂ i∂i (φ− ψ)

]
δij = −2a2δ(1)T i

j

2 Vector perturbations:
(Vi,j + Vj,i )

′ + 2H(Vi,j + Vj,i ) = −2a2δTij

3 Tensor perturbations: they carry the fundamental DOF of the
graviton and usually do not receive a contribution from linear
perturbations. They obey a wave-like equation

h′′ij + 2Hh′ij −∆hij = 2a2δT i
j(T )
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Why cosmological perturbation theory?

Providing the only link between cosmology of the early universe and
current observational data.

Study larger structures from small early density fluctuations.

Test astrophysical models for compact objects.

A link between classical and quantum physics and a possible insight
to a quantum theory of gravity.

Study models of particle physics at energy scales beyond the reach
of Earthly accelerators.

Study modified theories of gravity.

Study models for inflation.
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General structure for a theory of gravity

the Poincaré group global as the isometry group of M4;

xµ → xµ + ξµ(X )

ξµ(X ) = εµ + ωµνx
ν

generator of Lie group (φ′ = U(Λ, ε)φ) are the translation and rotation
generators Pµ, Mµν ;

U(Λ, ε) ' exp(
1

2
ωµνM

µν + εµP
µ)

satisfying the algebra

[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ

[Mµν ,Pσ] = ηνσPµ − ηµσPν

[Pµ,Pν ] = 0
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transformation of the field derivative picks up a derivative term;

(φ)′,µ = (Uφ),µ = Uφ,µ + U,µφ 6= Uφ,µ

δ0φ,µ = (
1

2
ωαβMαβ + εαP

α)φ,µ − ξν,µφ,ν +
1

2
ωαβ,µΣαβφ

We define a new “covariant derivative” that includes gauge fields which
transform to offset the undesired effect;

(φ)′;µ ≡ Uφ;µ ⇒ δ0φ;µ ≈ (
1

2
ωαβMαβ + εαP

α)φ;µ + ω α
µ φ;α

to eliminate the inhomogeneous term, we simply add a set of
compensating gauge fields Aij

λ such that;

φ|µ ≡ (∂µ +
1

2
Aij

µΣij )φ

δ0φ|µ = (
1

2
ωαβMαβ + εαP

α)φ|µ − ξν,µφ|ν

⇒ δ0A
ij
λ = ωi

ρA
ρj
λ + ωj

ρA
iρ
λ − ξ

ρ
,λA

ij
ρ − ξρA

ij
λ,ρ − ω

ij
,λ
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to eliminate the homogeneous term, we introduce a set of fields h ν
k ;

φ;k ≡ h ν
k φ|ν

δ0φ;k = (
1

2
ωαβMαβ + εαP

α)φ;k + ω α
k φ;α

⇒ δ0h
ν

k = ξν,ρh
ρ

k − ξ
ρh ν

k ,ρ + ω ρ
k h ν

ρ

Having done all that, we end up with a Lagrangian for which δL = 0,
However, we have an extra term in the invariance condition

δS = 0⇒ δL︸︷︷︸
=0

+L (δxµ),µ = 0

Owing to the conformal invariance of the Lagrangian, we can define a
new Lagrangian L′ = LL and we look for the L such that;

∆L ′ = 0⇒ LδL + L δL + ξµ,µLL = 0

⇒ δL + ξµ,µL = 0

the only function of the new field variables satisfying this condition can
be shown to be shown to be L = [det(h ν

µ )]−1.
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The covariant derivative allowed for a 40 new gauge fields

L(φ, φ,µ)→ L (φ, φ,µ, h
ν

k ,Aij
µ) ≡ LL(φ, φ;k )

to find invariant quantities, we look at the commutator of two covariant
derivative

[Dk ,Dl ]φ = h λ
k (∂λ +

1

2
Aij

λΣij )h
ρ

l (∂ρ +
1

2
Aij

ρΣij )φ− (k ↔ l)

=
1

2
R ij

kl Σijφ− S i
klφ;i

R ij
kl ≡ h λ

k h ρ
l (Aij

ρ,λ − Aij
λ,ρ + Ai

kλA
kj
ρ − Ai

mρA
mj
λ)

S i
kl ≡ h λ

k h ρ
l (bi

ρ|λ − bi
λ|ρ)
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Geometric interpretation

theories of gravity follow from the
geometric interpretation of the
gauge fields. GR is based on
Riemannian geometry, which
satisfies the following constraints:

1 ∇αgµν = 0.

2 Γλµν . These two conditions lead
to the Levi-Civita connection

g Γλµν =
1

2
gλρ (∂µgνρ + ∂νgρµ − ∂ρgµν)

Figure: Reproduced from Milutin
Blagojevic and Friedrich W. Hehl.
Gauge Theories of Gravitation. 10
2012.
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Palatini formalism

By Define nonmetricity tensor ∇ρgαβ ≡ Q αβ
ρ and torsion tensor

S α
µν = Γα[µν]. The Affine connection can be written as

Γλαµ =
1

2
gλν(∂µgνα + ∂αgνµ − ∂νgαµ)︸ ︷︷ ︸

Γ̃λ
αµ

+Sλαµ + S λ
α µ + S λ

µ α︸ ︷︷ ︸
Kλ

αµ

+
1

2
gλν(Qµνα + Qαµν − Qναµ)︸ ︷︷ ︸

Nλ
αµ

Reimmann tensor is still used to construct invariant quantities
Define the covariant derivative of a tensorial field to measure the parallel
transport. For a vector field uµ parallel transported along two paths;

[∇α,∇β]uµ = Rµναβu
ν + 2S ν

αβ ∇νuµ

Rµναβ ≡ 2∂[αΓµ|ν|β] + 2Γµλ[αΓλ|ν|β]

S ν
αβ ≡ Γν[αβ]
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Field equations in GR

Simplest invariant quantity can be constructed from the contraction
R = gµνRαµαν

S =

∫
d4x(

1

2κ
R(g) + Lm)

√
−g

δgS = 0⇒ Gµν(Γ) = 8πGNTµν

δS = 0⇒ Sαµν = 0

δQS = 0⇒ Qα
µν = 0

where Gµν(Γ) ≡ Rµν(Γ)− 1
2R(Γ)gµν is the Einstein tensor. While

reproducing GR, the structure allows in general for a non-vanishing
torsion and non-metricity provided that a matter field can couple with
these geometric fields.
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R2 theories

another scalar can be constructed from Riemann tensor known as
homoethic curvature

R̂αβ = ∂αΓννβ − ∂βΓννα =
1

2
∂αQβ −

1

2
∂βQα

note that gµνR̂αβ = 0 so the simplest invariant quantity must be
quadratic;

S(g , Γ) =

∫
d4x
√
−g(gµνRµν + ξR̂µνR̂

µν + Lm)

variation with respect to the metric leads to

Rµν −
1

2
gµνR −

ξ

2
gµνR̂αβR̂

αβ + ξgλρ(R̂αµR̂βν + R̂µαR̂νβ) = Tµν

Rµν −
1

2
gµνR = Tµν + T eff

µν
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Einstein-Proca field

variation wrt Γ reveals that non-metricity can be expressed in terms of
one vectorial DOF

Qλµν = 2gµνQλ − 2gλµQν − 2gλνQµ

vector is scaled Qµ obeys Proca equation

Rµν −
1

2
Rgµν = FαµFβνg

αβ − 1

4
FαβF

αβgµν + m2AµAν −
1

2
m2AαAαgµν︸ ︷︷ ︸

T eff
µν

∇̃µFµν −m2Aν = 0

Fµν ≡ ∂µAν − ∂νAµ

The theory has advantage of being quantum mechanically stable and free
of ghosts c.f. RµνR

νµ.
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Zeroth order

We assume an FRW background with cosmological constant

ds2 = −dt2 + a2(t)δijdx
idx j

⇒ G (0)
µν + Λg (0)

µν = 0

⇒ a(t) = a(t0)e
√

Λ
3 t

Our mail assumption is that Aµ is a first order perturbation to the
geometry in essence so it would exhibit no influence on the zeroth order.
We are only interested in the footprint of this field not the inflaton itself
so we adopt a general exponentially expanding universe.
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First order

As the effective EM is second order in nature, δ(1)Tµν = 0 and the first
order field equations δ(1)Gµν = δ(1)Tµν

δ(1)G 0
0a

2 = 6H∂tψ
(1) + 6H2φ(1) − 2∂iiψ

(1)

δ(1)G 0
ia

2 = 2H∂iφ
(1) + 2∂t∂iψ

(1)

δ(1)G i
ia

2 = −2∂ttψ
(1) − 2H∂tφ

(1) − 4H∂tψ
(1) − 4φ(1)Ḣ − 2H2φ(1)

+ ∆(ψ(1) − φ(1))− (ψ(1) − φ(1)),ii

δ(1)G i
ja

2 = δ(1)G 2
1 = (Φ−Ψ),ij , i 6= j

The last equation gives ψ = φ. The third equation give the time
evolution of ψ(1) as;

φ(1) = C1f (t) + C2g(t)

The second equation then leads to (aφ(1)),it = 0 which implies
C1(r , θ, φ) = C1 and C2(r , θ, φ) = C2. Finally, the first equation implies
C1 = C2 = 0. So the solution is

φ(1) = ψ(1) = 0

Ammar Kasem PGW in Generalized Palatini Gravity



Second order

An explicit solution of the Proca equation reveals

Y
(1)
0 (η) = 0

Y
(1)
i (η) = Ci+η

1
2 +

√
1+ m2

H2 + Ci−η
1
2−

√
1+ m2

H2 ,

From G 0
0 , ∆−1∂iG

i
0 and G k

k

2∂i∂
iψ(2) − 6Hψ̇(2) − 6H2φ(2) = m2QkQ

k − s

a2
Q̇i Q̇

i (1)

ψ̇(2) + Hφ(2) = 0 (2)

∆φ(2) + 3Hφ̇(2) + 6H2φ(2) −∆ψ(2) + 6Hψ̇(2) + 3ψ̈(2) = −m2

2
QkQ

k +
s

2a2
Q̇kQ̇

k(3)

Using the second equation φ can be eliminated in the first and third
revealing that ψ is not dynamical

∆ψ(2) =
m2

2
QkQ

k − s

2a2
Q̇i Q̇

i

− 1

H
∆ψ̇(2) −∆ψ(2) = −m2

2
QkQ

k +
s

2a2
Q̇kQ̇

k
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Tensor perturbations

The projection operator can be used to eliminate the scalar and vector
parts of the second-order Einstein field equations as

Πlm
ij G

(2)
lm = Πlm

ij T
(2)
lm

this leads then to the following wave equation

h′′ij + 2Hh′ij −∇2hij = −4Πij
lmSlm

Slm(η) ≡ 8πGN

(
m2YlYm −

1

a2
Y ′lY

′
m

)
− 8πGN

(
m2YkYk −

1

a2
Y ′kY

′
k

)
δlm

By Fourier-transforming from (η, x) to (η, k) space one gets

h′′(λ)(k, η) + 2Hh′(λ)(k, η) + k2h(λ)(k, η) = S(λ)(k, η),

Ammar Kasem PGW in Generalized Palatini Gravity



Green’s function

Equation can be written as

1

a

(
v̈k + (k2 − ä

a
)vk
)

= qik (k)Sij (t)δ3(k) ≡ S(k, t)

Where hk = vk

a . We resort to Green’s function method to solve this
equation, writing it as a second order differential equation
L̂G (t, t̃) = δ(t − t̃) where

G (t; t̃) ≡ v1(t)v2(t̃)− v1(t̃)v2(t)

v ′1(t̃)v2(t̃)− v1(t̃)v ′2(t̃)

where v1(t), v2(t) being two linearly independent solutions to the
homogenous equation L̂v(t) = 0. For a De-Sitter universe H(t) ≡ H

v±(t) = e(−H±
√

H2−k2)t

G (t; t̃) =
1

2
√
H2 − k2

(
e(−H+

√
H2−k2)(t−t̃) − e(−H−

√
H2−k2)(t−t̃)

)
=

1√
H2 − k2

sinh(
√
H2 − k2(η − η̃))
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Power spectrum

The particular solution for the gravitational waves is then given by an
integral over the Greens function

hk(t) =

∫ t

t0

Gk (t; t̃)S(k, t̃)dt̃,

or, hk(t) =
1

a(t)

∫ t

t0

Ḡk (t; t̃)a(t̃)S(k, t̃)dt̃

Ḡk (t; t̃) =
1√

H2 − k2
sinh(

√
H2 − k2(t − t̃))

The power spectrum is then defined by;

〈hk1 (t)hk2 (t)〉 =
2π2

k3
δ(k1 − k2)Ph(k , t)

Ph(k , t) = k3 1

a(t)2

∫ t

t0

∫ t

t0

Ḡk (t; t̃1)a(t̃1)S(t̃1)Ḡk (t; t̃2)a(t̃2)S(t̃2)dt̃1dt̃2

ΩGW (k , η) ≡ ρGW (k , η)

ρcr (η)
=

1

24

(
k

H

)2

Ph(k , η)
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Sensitivity curves

Figure: Sensitivity curves for several ground-based interferometers. Compiled
from publicly available data.
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Dependence on Q modes

10−3 10−2 10−1 100 101 102 103

k/H *

10−71
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10−15

P(
k,
η

→
0)
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All modes
Y1 + =H *

Y1 − =H *

Figure: Dependance of P of Q modes. Yi− modes dominate the power
spectrum because these modes grow rapidly towards the end of inflation.

We assume high-scale inflation H? = 1014 GeV compatible with the
observational upper bound.

Ammar Kasem PGW in Generalized Palatini Gravity



Dependence on mass

10−1 100 101 102 103 104
f
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10−29
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MY=10−2H *
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KAGRAplusCombined
AdVplus
ET-C

Figure: The GW energy density ΩGW (k, η) defined in (??) as a function of the
GW frequency f and the geometric Proca mass MY . Superimposed on the
plots are the sensitivity curves.

The main result reveals that for slightly larger masses, a detectable
stochastic signal can be within reach at higher frequencies.
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Conclusions and prospects

Geometric Proca field significantly enhances the gravitational wave
signal to detection level of future upgrades of GW detectors into
third-generation (3G).

If these findings are confirmed through observation, it will provide
evidence that gravity is non-Riemannian in nature

A lack of observational evidence would hugely constraint this class of
theories so it would be disfavored direction of research. This could
be a similar scenario to scalar-tensor theories after GW170817.

A confirmation on non-Riemannian gravity would have far-reaching
implications for our understanding of the universe and its evolution,
including shedding light on the origin of PGWs and the nature of
dark matter.

Further possible directions include studying the effects of the
geometric Proca field on other astrophysical phenomena, such as the
formation of galaxies and the evolution of black holes.

Study of BSM with fields of geometric origin.
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