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Scalar-Vector-Tensor Decomposition

In a universe largely dominated by isotropy and homogeneity, small
density fluctuations induces small deviation from FRW

ds® = ((O)gm, + 08 ) dxH dx”

®g,., =n,a(n) and 6g., <© g,,. Perturbations can be conveniently

split into
6goo = 2a°¢
bgoi = a*(Bi—S)
6gj = a*(20dy; + Ej+2F; ) + hy)

1 Scalars: 4 DOF encoded in {¢, B, ¢, E} (2 are physical).

2 Vectors: 4 DOF encoded in two divergence-free vectors {F;, S;} (2
are physical).
s» Tensor: 2 DOF encoded in the traceless, transverse hj;

Ammar Kasem PGW in Generalized Palatini Gravity



Gauge fixing

After fixing the coordinates, four DOF can be _eIiminated i.e. in
longitudinal gauge B=E =0and V; = S; — F;;

800 —2°(t)(1 + 2™ + )
g = 0

g = 201200 62+ 2 (00 + o + 1]

the goal is to solve Einstein field equations resulting from these small
perturbations order by order;

0Gu, =0T,
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First-order perturbations

1 Scalar perturbations: they are related to density perturbations and
explain structure formation and CMB anisotropy.

90" —3H(h + Hp) = 232601
(¥ +He); = 2276077

[+ H(20 + 8) + H + K)o+ 200i(6 — )] o

22507

2 Vector perturbations:
(Vij+ Vi) +2H(Vij + Vji) = —2a%0T;

5. Tensor perturbations: they carry the fundamental DOF of the
graviton and usually do not receive a contribution from linear
perturbations. They obey a wave-like equation

hij + 2Hhj; — Ahj = 23°6 T}
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Why cosmological perturbation theory?

Providing the only link between cosmology of the early universe and
current observational data.

Study larger structures from small early density fluctuations.
Test astrophysical models for compact objects.

A link between classical and quantum physics and a possible insight
to a quantum theory of gravity.

Study models of particle physics at energy scales beyond the reach
of Earthly accelerators.

Study modified theories of gravity.
Study models for inflation.
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General structure for a theory of gravity

the Poincaré group global as the isometry group of Mj;
xH — xH 4+ EH(X)
£4(X) = e + wh x"

generator of Lie group (¢’ = U(A, €)¢) are the translation and rotation
generators P*, M,,,;

1
U(A,€) ~ exp(EwWM’“’ +e€,P")
satisfying the algebra

[MEY MPT] = P MHT — P MYO 4 h? MYP — v MPP
[M/,LV7 Pcr] _ nua'P,u _ npcrpu
[PH, P"] =0
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transformation of the field derivative picks up a derivative term;

((25):# — (U¢),M — U(b,u + U,u¢ # U¢,u
1 1
60¢7M = (EwaBMaﬁ + EaPa)¢,u — V’M(é’y + Ewa{}uzaﬁqs

We define a new ‘“covariant derivative” that includes gauge fields which
transform to offset the undesired effect;

1
(¢),/M = U¢;H = 60¢;M ~ (EwaﬁMaB aF EaPa)(b;u == Wua¢;a

to eliminate the inhomogeneous term, we simply add a set of
compensating gauge fields AY | such that;

1.
Plu = (Ou + 5AY ,Ty)¢

1
o = (50" Ma + €aP )i = €

g _ i AP i AP P Al ep Al
= oA y = w' AV + W/ AT LAY, —EPAY - w
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to eliminate the homogeneous term, we introduce a set of fields h,”;

ok = hlon
1
dopk = (EWQBMWIB + €aP?)dik + W b0
= 60hky = gl/,phkp — éphkl’7p + wkphpy

Having done all that, we end up with a Lagrangian for which §.Z = 0,
However, we have an extra term in the invariance condition

0§=0= 02 +2(6x"), =0
=0
Owing to the conformal invariance of the Lagrangian, we can define a
new Lagrangian £’ = £.Z and we look for the £ such that;

AZL' =0= L0L + L0+ ¢4, L2 =0
=6L+&H, =0

the only function of the new field variables satisfying this condition can
be shown to be shown to be £ = [det(h,”)] .
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The covariant derivative allowed for a 40 new gauge fields

L(, b)) = L(, b b, AT ) = LL(9, Dk

to find invariant quantities, we look at the commutator of two covariant
derivative

1 1,
[De, Dil¢ = h>(0x + SA” \Z)h, (0, + AT )6 — (k < 1)

1 i
- ERJ WZii® — S' ki
le ki = hkAhIp(AU oA AU AP + Aik)\Akjp — AimpAmjA)
Sy = hk)\hlp(b,pM = b',\\p)
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Geometric interpretation
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Palatini formalism

By Define nonmetricity tensor Vpg‘w = on‘ﬁ and torsion tensor

S0 = FO‘[W]. The Affine connection can be written as
A 1l Av
Mo = Eg (Ou8va + 0ubuy — Ougap)
A

ap

1
+ S)\ap + SaAp, + S[LAOL + EgAV(Q,uuoz + Qa,uu = Quap,)

ap Na“

Reimmann tensor is still used to construct invariant quantities
Define the covariant derivative of a tensorial field to measure the parallel
transport. For a vector field u* parallel transported along two paths;

[Va, Vp]ut = R“mﬁul’ +2S,5V, ut
1 — iz noorA
Rivas = 20,5 T 205060
Saf = Mg
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Field equations in GR

Simplest invariant quantity can be constructed from the contraction
R = g;uz R

pov
1
S = [ dx(oR@) + Zn)ve
5.5 =0= Gu() = 87GyTo,
0s =0= Sawj =0

5gS=0=Q%, = 0

where G,,,,(7) = R, (T) — 2R(F)g.uv is the Einstein tensor. While
reproducing GR, the structure allows in general for a non-vanishing
torsion and non-metricity provided that a matter field can couple with
these geometric fields.
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another scalar can be constructed from Riemann tensor known as
homoethic curvature

~

1 1
Roeﬁ — aary,jﬁ — agruya = EaaQﬁ — EaﬁQa

note that g” :‘A?ag = 0 so the simplest invariant quantity must be
quadratic;

S(g, TN = /d4x" —g(g’“’RW, + §’f‘>wf‘my + Zm)

variation with respect to the metric leads to

1 &€~ 4 " A A
Ry — ng,R - §gHVRaBRa'B A (T e Ralfg) = T
1
Ri— ~8uwR = T +TH
2 wy
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Einstein-Proca field

variation wrt " reveals that non-metricity can be expressed in terms of
one vectorial DOF

Q)xp,l/ - 2g;u/ @ — 2g)\u Q — 2g>\1/ Qp

vector is scaled @,, obeys Proca equation

1 1 1
R;w = ERg;u/ - FauFBVgaﬂ - Z a,BFaﬂg;w + mZAHA,, — EmzAaAaguu
Tef
VuF™ —mPA” = 0
Fn = 0,A, — 0, AL

The theory has advantage of being quantum mechanically stable and free
of ghosts c.f. R, R"F.
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We assume an FRW background with cosmological constant

ds? = —dt? + a%(t)d;dx dx
=GO +AgQ = 0

= a(t) = a(tp)eV?t

Our mail assumption is that A, is a first order perturbation to the
geometry in essence so it would exhibit no influence on the zeroth order.
We are only interested in the footprint of this field not the inflaton itself
so we adopt a general exponentially expanding universe.
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As the effective EM is second order in nature, §() T, = 0 and the first
order field equations V)G, = s T,

sMG%a% =
sWeha? =
W62 =

_l’_
WG =

6HO M + 6H2pW) — 295V

2HB; M + 20,07

—20,1p — 2H8, ¢ — 4H, )V — 4pM H — 2H? M)
A(p® — ¢M) — (1 — g1y 5

SWGH = (6 —W)y, i#)

The last equation gives ©» = ¢. The third equation give the time
evolution of () as;

oW = Gif(t) + Cog(t)

The second equation then leads to (a¢()) ;; = 0 which implies
Ci(r,0,¢) = G and Cy(r, 0, ¢) = C,. Finally, the first equation implies
C; = G = 0. So the solution is

¢(1) — 1/,(1) -0
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An explicit solution of the Proca equation reveals
1
Yo () = 0
YO@m) = GanttViE 4 cpitViTE,

From G,°, A=19;G," and G, ¥

200® — 6HH® —6H6D = mPQuQ* = Q¢
@+ H® = 0
- - . 2 -
A¢D + 3HYD + 616D — Ay + 61 + 30D = —TQu@* + 5@

Using the second equation ¢ can be eliminated in the first and third
revealing that v is not dynamical

2
@) m- kK_ 5 hpi
Ay > QQ 2320,0
1. 2 s . .
A AGD _Ap@ Mo ok S A Ak
Hmp Ay 5 QQ +2320k0
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Tensor perturbations

The projection operator can be used to eliminate the scalar and vector
parts of the second-order Einstein field equations as

'm 2 m 2
NG = nir T
this leads then to the following wave equation
W'y +2HK ; —V2h; = —40;"™S),
1
Sm(n) = 8nGy (mzY,Ym — gy',v'm)
1
— 87TGN <m2 Yk Yk — ? Y,k Y,k) 5,,,,
By Fourier-transforming from (7, x) to (7, k) space one gets

W' (K, 1) + 2HH ) (k,n) + k2h) (k, 7) = SN (k, ),
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Green's function

Equation can be written as

T = Im) = gHRS 05K = Sk 1)

Where h, = “. We resort to Green's function method to solve this
equation, writing it as a second order differential equation
LG(t,t) = 0(t — t) where

V]_(t)Vz('Z‘) = Vl('l:)Vg(t)

MG GERIGIAG)

where v1(t), v2(t) being two linearly independent solutions to the
homogenous equation Lv(t) = 0. For a De-Sitter universe H(t) = H

G(t; 1)

V:t(t) _ e(—H:I:\/Hz—kZ)t
- 1 2 2
. _ (—H+VH2—k?)(t—t) _ (—H—VH?>—Kk?)(t—%)
G(t; t) = (e e )

1 . 5 20
= \/ﬁsmh(\/H — k2(n — 1))
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Power spectrum

The particular solution for the gravitational waves is then given by an
integral over the Greens function

hk(t)

/ ' Gu(e: D)S(k, B)dE,
o () = % /t Gu(t: D)a(D)S(k, )

Gu(t; 1) = \/ﬁsinh(\/HZ—kZ(t—f))

The power spectrum is then defined by;
272

(M ()i (t)) = —5-0(ki — k2)Pa(k; t)

Pk t) = k a(t)z/to/ton(t,tl) (8)S(81) G (: B2)a(B) S (B) dEad
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Sensitivity curves

Figure:
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Dependence on Q modes

—— All modes
— Y14 =H"
— Yi_=H"

S
T
<

X
a

Figure:
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Dependence on mass

My=10"2H"
My=H"

My=2H"
KAGRAplusCombined
AdVplus

ET-C

Figure:
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Conclusions and prospects

Geometric Proca field significantly enhances the gravitational wave
signal to detection level of future upgrades of GW detectors into
third-generation (3G).

If these findings are confirmed through observation, it will provide
evidence that gravity is non-Riemannian in nature

A lack of observational evidence would hugely constraint this class of
theories so it would be disfavored direction of research. This could
be a similar scenario to scalar-tensor theories after GW170817.

A confirmation on non-Riemannian gravity would have far-reaching
implications for our understanding of the universe and its evolution,
including shedding light on the origin of PGWSs and the nature of
dark matter.

Further possible directions include studying the effects of the
geometric Proca field on other astrophysical phenomena, such as the
formation of galaxies and the evolution of black holes.

Study of BSM with fields of geometric origin.
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