
C++ standardization and 
Kona/Issaquah trip reports

Bernhard Manfred Gruber

2023-03-13 1



The committee

• Formally called ISO/IEC JTC1 / 
SC22 / WG21

• Consists of experts sent by 
national bodies (NB) of ISO 
members, currently 200 – 300

• Usually, 3 F2F meetings a year

• Lots of virtual ones since Covid

• News, updates, WG21 info: 
https://isocpp.org

2023-03-13 2

https://isocpp.org/


Progress and status

• The train model: ship every 3 years
• Several design meetings
• Feature freeze
• Committee draft (CD)
• NB comment resolution
• DIS (draft IS)
• FDIS (final draft IS)
• IS (international standard)

• Schedule: P1000

• C++ LaTeX draft: 
https://github.com/cplusplus/draft

• Browsable: https://eel.is/c++draft

2023-03-13 3

https://wg21.link/p1000
https://github.com/cplusplus/draft
https://eel.is/c++draft


Study groups (SGs)

2023-03-13 4

Example: Issaquah agenda and rooms:



Papers

• Are the main means to provide input into C++ standardization

• Nxxxx papers are official ISO documents
• meeting announcements, official minutes, working drafts, editor’s reports … 

• PxxxxRy papers are for proposals and have revisions

• Are grouped/released in “mailings” once per month
• Previously, mailings were sent before and after each meeting

• Papers: https://www.open-std.org/jtc1/sc22/wg21/docs/papers
• GitHub tracker: https://github.com/cplusplus/papers/issues

• Redirect service: https://wg21.link
• Get paper: wg21.link/pXXXX
• Get corresponding issue on GitHub: wg21.link/pXXXX/github

2023-03-13 5

https://www.open-std.org/jtc1/sc22/wg21/docs/papers
https://github.com/cplusplus/papers/issues
https://wg21.link/


Recent meetings

• The 2022 Kona autumn meeting
• 7-12 Nov 2022, Kona, Hawaii, US (UTC-10)
• First ever hybrid meeting, ~160 total, >100 in-person
• Objective: resolve C++23 NB comments (137)

• Then: progress on papers for C++26

• The 2023 Issaquah winter meeting
• 6-11 Feb 2023, Issaquah, Washington, US (UTC-8)
• Hybrid meeting, 160 total, >80 in-person
• First time: official evening sessions (because of too 

little rooms)
• Objective: resolve C++23 NB comments, finish DIS

• All done, editor is preparing DIS

• Then: progress on papers for C++26

2023-03-13 6

Previously:



Ready for C++26 plenary

• Structured bindings
• introducing a pack

• auto [a, …bs] = tupleOrStruct;

• can be constexpr
• can have attributes

• static_assert(false)

• std::function_ref

• Static and SBO vectors

• #embed

• std::submdspan

• More constexpr <cmath>

• std::breakpoint

• Linear algebra (C++ BLAS) after a 
final review

• New SI prefixes

• std::bitset(std::string_view)

• Library fundamentals TS v3
• propagate_const, scope_exit, 

observer_ptr, resource_adapter

2023-03-13 7



C++26 progress

• New C++ Ecosystem IS
• building modules/header units, build system interop, 

portable diagnostics (SARIF) and CLI

• Many TMP improvements, inspired by Circle
• repeated argument against: reflection will be able to do 

that uniformly

• No discussion on any reflection facilities

• Packs, pack indexing and language tuples
• as a replacement for std::tuple

• std::simd: Entire day in Issaquah for 
implementer/user feedback (mostly Intel)

• Plan: forward it to LWG at next meeting for C++26

• std::simd: Pave the way for (via a few ADL 
fixes/restrictions):

• non-member operator[]
• overloadable operator:?

• constexpr reinterpret_cast from void*
• to allow constexpr std::format, std::function, std::any

• Non-transient constexpr allocation
• moving CT heap memory to RT

• Generation of messages for static_assert
• also: general messages during compilation

• Pattern matching

• Contracts
• settled on MVP for C++26 and discussed potential TS

• Ignorability of standard attributes
• standard attributes must be syntax checked
• a non-zero __has_cpp_attribute means the compiler is 

“pretty gosh darn sure” to implement the 
recommended practice

• paper pending to synchronize with C

2023-03-13 8



C++26 progress

• Talk: The Val object model, Dave 
Abrahams

• Chris Lattner: C++ has value semantics, 
but nobody uses it

• Fortran is often claimed to be faster than 
C++, because it does not have aliasing

• New alternative to std::error_code

• Senders & Receivers (std::execution) 
on track

• Networking effort
• seems dead for now, previous authors do 

not want to continue based on S&R
• however: new S&R based proposal by 

different author

• do statements, and do_yield
• auto v = do { statements…; do_yield res; }

• constexpr_t
• Generalization of std::integral_constant

• C23 compatibility

• Hazard pointers

• Read-copy-update (RCU)

• Synchronized_value (a T + mutex)

• Philox RNG engine

• Statistical functions

• fiber_context
• stackful context switching

2023-03-13 9



Kona evening session: Future of C++

• Background: NIST minimum standards for software 
verification: “Some languages, such as C and C++, 
are not memory-safe”

• Safety is a property of operations and composes, 
safe/unsafe operations could be clearly defined, 
only safe ones allowed in some parts of a program

• Path to safety: detect precondition violations and 
either stop the program or throw. Or lift 
preconditions and define result for nonsense input.

• In any save sub-language, some programs will be 
suboptimal

• E.g.: Rust needs unsafe to build an optimal doubly-
linked list. Cannot have safety in C++ without sacrificing 
some performance.

• Defining the right line between safe/unsafe 
features important. Safe part must not be too 
complex.

• Any unsafe code can still be validated and then be 
declared safe

• Kani: a Rust model checker for unsafe parts: 
https://github.com/model-checking/kani

• Idea: run with UBSan turned on in production, 
otherwise you are unsafe

• Sony tried UBSan in production for "The Last of Us": 
~5FPS

• Most vulnerabilities not in the domain of UBSan
• Google: running all sanitizers together in production: 

50% overhead
• Hardware acceleration can get this overhead very low
• ARM Memory Tagging Extension

• Running ASan in production increases attack surface

• 7% of all C++ users come from Unreal engine
• Rust was considered for game development and 

abandoned

2023-03-13 10

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/recommended-minimum-standards-vendor-or
https://github.com/model-checking/kani
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety


Issaquah: SG23 Safety and Security

• Prelude (mailing list): NSA officially recommends organizations to shift to memory safe languages 
(C#, Go, Java, Ruby, Swift) over C and C++

• Big discussions on safety profiles for C++
• Generalizing the safe/unsafe distinction of languages like Rust
• We want something, but we don't know what yet :)

• MS deployed some software in Rust. Main takeaway: Rust makes you rethink how you design 
code, once you grasp that, you can just as well write (safer) C++ again.

• Encourage more work on C++ safety profiles and features, à la [[trusted]], [[invalidating]], 
[[not_null]], [[check(range)]], [[check(type_safety)]], ...

• Zero-initialize objects of automatic storage duration P2723: SG23/EWG consensus

• Later (mailing list)
• US National Cybersecurity Strategy (fact sheet): shifting liability for software products and services to 

promote secure development practices
• EU Cyber Resilience Act (article): will impose general regulations on most software, based on a standard to be 

written, huge fines, carve-out for OSS, but explicitly calls out Linux, Chrome, Firefox, …

2023-03-13 11

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://berthub.eu/articles/posts/eu-cra-secure-coding-solution/


What's next

• C++23 is done
• Going through final ISO ballot now
• Implementation status: g++/clang++ 

almost feature complete for language 
changes, halfway for standard library

• Work on C++26 has begun, first items 
are ready for plenary in Varna

• Next meetings
• Varna, Bulgaria in June 2023
• Kona, Hawaii in November 2023
• Tentative for 2024: Japan, Stockholm 

(Sweden), Wrocław (Poland)

2023-03-13 12

https://en.cppreference.com/w/cpp/compiler_support/23
https://isocpp.org/files/papers/N4935.pdf
https://isocpp.org/files/papers/N4936.pdf


So, what's in C++23? – Language

• if consteval

• Explicit object parameter/deducing 
this

• #elifdef, #elifndef

• Multidimensional operator[]

• #warning

• More stuff allowed in constexpr

• Mandated declaration order layout 
for class types

• Attributes on lambdas

• More constexpr <cmath> functions

• static operator() and operator[]

• CTAD for inherited constructors

• [[assume(expr)]]

• Better Unicode handling

• Lifetime extension of temporaries 
in range-for head

• Decay copy: auto(x)

• UTF-8 support as source file enc.

• …

2023-03-13 13Complete list: https://en.cppreference.com/w/cpp/23

https://en.cppreference.com/w/cpp/23


So, what's in C++23? – Library

• std::stacktrace

• std::string::contains(…)

• std::out_ptr, std::inout_ptr

• constexpr std::optional, std::variant, 
std::unique_ptr, std::bitset

• Monadic functions for std::optional and 
std::expected

• Ranges/Views: zip, starts/ends_with, to, 
iota, shift_left/right, chunk, slide, stride, 
contains, cartesian_product, repeat, 
enumerate, …

• Formatting: ranges, thread::id, stacktrace

• std::format compile time format string 
check

• std::mdspan

• std::flat_[multi]set

• std::flat_[multi]map

• std::print

• std::byteswap

• std::expected

• std::unreachable

• std::generator

• import std

• extended FP types (std::float16, …, 
std::float128, std::bfloat16)

• std::move_only_function

2023-03-13 14



Thanks

• Questions?

• Other trip reports:
• July 2022 ISO C++ committee virtual meeting report, Timur Doumler

• Autumn ISO C++ standards meeting (Kona), Herb Sutter, after Kona

• C++23 “Pandemic Edition” is complete, Herb Sutter, after Issaquah

2023-03-13 15

https://blog.jetbrains.com/clion/2022/07/july-2022-iso-cpp/
https://herbsutter.com/2022/11/12/trip-report-autumn-iso-c-standards-meeting-kona/
https://herbsutter.com/2023/02/13/c23-pandemic-edition-is-complete-trip-report-winter-iso-c-standards-meeting-issaquah-wa-usa/


Backup slides

2023-03-13 16



Can I participate?

• Rules changed recently
• Previously: everybody was free to join as “observer” multiple times
• Now: this can only be done once and needs prior notice (ISO requirement)

• Observers can fully participate and vote in SGs, but not in plenary
• Only registered NB members can vote in plenary

• Regular participation requires joining a NB
• Either the NB where you or your employer is situated (for CERN: SNV)

• May be subject to fees, full voting rights
• As alternate representative of the Standard C++ Foundation

• For free, but without plenary voting rights

• Lots of discussion also on mailing lists (= “reflectors”), some are public: 
https://lists.isocpp.org

• https://isocpp.org/std/meetings-and-participation

2023-03-13 17

https://lists.isocpp.org/
https://isocpp.org/std/meetings-and-participation

	Slide 1: C++ standardization and Kona/Issaquah trip reports
	Slide 2: The committee
	Slide 3: Progress and status
	Slide 4: Study groups (SGs)
	Slide 5: Papers
	Slide 6: Recent meetings
	Slide 7: Ready for C++26 plenary
	Slide 8: C++26 progress
	Slide 9: C++26 progress
	Slide 10: Kona evening session: Future of C++
	Slide 11: Issaquah: SG23 Safety and Security
	Slide 12: What's next
	Slide 13: So, what's in C++23? – Language
	Slide 14: So, what's in C++23? – Library
	Slide 15: Thanks
	Slide 16: Backup slides
	Slide 17: Can I participate?

