C++ standardization and
Kona/lssaquah trip reports

Bernhard Manfred Gruber

The committee

Formally called ISO/IEC JTC1 /
SC22 / WG21

Consists of experts sent by
national bodies (NB) of ISO
members, currently 200 — 300

Usually, 3 F2F meetings a year
Lots of virtual ones since Covid

News, updates, WG21 info:
https://isocpp.org

2023-03-13

Completed
C++14

Issaquah, WA, USA ~

(2014)

Completed
C++17
Kona, HI, USA

https://isocpp.org/

1989 1990 1991 1992 1993 1994 1995 1996 1997

P d t t C++98
2002 2003 2004 2005 2006 2007 2008 2009 2010
_/‘ C++0x/11
* The train model: ship every 3 years
e Several design meetings T IOEEEEEESE—————
* Feature freeze
1 2011 2012 2013 2014 2015 2016 2017 2018 2019
¢ Commlttee draft (CD) Aug Feb Oct Apr Sep - Jun Nov May Oct Mar Jun Nov - Jul Nov Mar Jun Nov Feb Jul Nov-
* NB comment resolution IS - trunk

* DIS (draft IS)

i
TSes - esrure NSNS —— ISR

° F D I S (fl na | d ra ft IS) branches for Lib Fundamentals 1 ib Fundamentals .-'.: Lib Fundamentals 3
_ _ Soparate release T R parallelsm 2
* IS (international standard) 9 :

e Schedule: P1000

e C++ LaTeX draft:
https://github.com/cplusplus/draft
* Browsable: https://eel.is/c++draft

2023-03-13

2020 2021 2022 2023 2024 2025 2026 2027 2028
Jun Nov Feb Jun Oct Feb Jul Nov - Jun Nov May Oct Mar Jun Nov - Jul Nov Mar Jun Nov Feb Jul Nov -

Lib Fundamentals 3

’
oncurrency 2

https://wg21.link/p1000
https://github.com/cplusplus/draft
https://eel.is/c++draft

Study groups (SGs

Example: Issaquah agenda and rooms:

| Day H Start ” Break ” Lunch ” Break H End
)) ISO/IEC JTC 1 () (F)DIS Approval 9.00 AM
3-stage pipeline February TMonday 1y
SC 22 (Pgmg Langs) CD & PDTS Appr0Va| |Februa_1:}-' & Tuesdav ‘ 12-00 — [|3-15—
[February 9 Wednesday| 030 AN 10:15 1:00 PM [[3:30 o [0 PM
|Februa_rj.-' 10 Thursday |) 10:30 AM
WG21 — C++ Committee (full plenary) Internal Approval [February 1 Friday |
Admin Core Wording Lib Wording 3 - Wording & Consistency February 12 Saturday Ig’liiid No further breaks gooloat;;;h -

Group

Direction | ABI Review

2023-03-13

Group | Group Core Evolution Lib Evolution 2 - Design & Target (IS/TS) Pienary \ion am + Sat am Catterall + Bergsma 85
LEWG Mon-Fri, Tue eve Barlow
EWG Mon-Fri Catterall
- - LWG hon-Sat Rowley
CWG Mon-Sat Denton
SG1 Concurrency Mon-Fri (mornings only) ~ Bergsma
- Tl st 1 - Domain Specific SG4 Networking Wed-Thu (evenings only) Barlow
Investigation & SG6 Numerics Tue evening Bergsma
Machine Learning Incubation SG6 Numerics Thu evening Denton
3G9 Ranges Mon pm + evening Bergsma
- - 3G15 Tooling Thu-Fri (evenings only) Rowley
Safety & Security SG16 Unicode _ .
SG17 EWG-I Wed-Fri (evenings only) Bergsma
Completed, inactive SG17 EWGH Fri pm Bergsma
3G21 Contracts Tue-Wed pm Bergsma
SG23 Safety and Security Thu pm Bergsma

Papers

* Are the main means to provide input into C++ standardization
* Nxxxx papers are official ISO documents

* meeting announcements, official minutes, working drafts, editor’s reports ...

* PxxxxRy papers are for proposals and have revisions

* Are grouped/released in “mailings” once per month
* Previously, mailings were sent before and after each meeting

* Papers: https://www.open-std.org/jtcl/sc22/wg21/docs/papers
e GitHub tracker: https://github.com/cplusplus/papers/issues

* Redirect service: https://wg21.link
* Get paper: wg21.link/pXXXX
* Get corresponding issue on GitHub: wg21.link/pXXXX/github

2023-03-13

https://www.open-std.org/jtc1/sc22/wg21/docs/papers
https://github.com/cplusplus/papers/issues
https://wg21.link/

Previously:

Re C e nt m e et i n g S s (virtual) 2022-07-25: Zoom virtual plenary meeting

o (virtual) 2022-02-07: Zoom virtual plenary meeting
» (virtual) 2021-10-04: Zoom virtual plenary meeting

o (virtual) 2021-06-07: Zoom virtual plenary meeting

° The 2022 Kona autumn meetlng e (virtual) 2021-02-22: Zoom virtual plenary meeting
e 7-12 Nov 2022’ Kona, Hawaii, us (UTC'].O) » (virtual) 2020-11-0%: Zoom virtual plenatrj; meeting
. . . . « 2020-02-10 to 15: Prague, Czech Republic; Avast Software
* First ever hybrid meeting, ~160 total, >100 in-person

* Objective: resolve C++23 NB comments (137)
* Then: progress on papers for C++26

* The 2023 Issaquah winter meeting
* 6-11 Feb 2023, Issaquah, Washington, US (UTC-8)
* Hybrid meeting, 160 total, >80 in-person

* First time: official evening sessions (because of too
little rooms)

* Objective: resolve C++23 NB comments, finish DIS
* All done, editor is preparing DIS
* Then: progress on papers for C++26

2023-03-13 6

Ready for C++26 plenary

e Structured bindings * More constexpr <cmath>
* introducing a pack e std::breakpoint
e auto [a, ...bs] = tupleOrStruct; _
« can be constexpr * Linear algebra (C++ BLAS) after a
* can have attributes final review
e static_assert(false) * New Sl prefixes
e std::function ref * std::bitset(std::string_view)
e Static and SBO vectors * Library fundamentals TS v3

e propagate_const, scope_exit,
observer_ptr, resource adapter

* #embed
e std::submdspan

C++26 progress

New C++ Ecosystem IS
. buildinlg modules/header units, build system interop,
portable diagnostics (SARIF) and CLI
Many TMP improvements, inspired by Circle
* repeated argument against: reflection will be able to do
that uniformly
No discussion on any reflection facilities

Packs, pack indexing and language tuples
* as areplacement for std::tuple

std::simd: Entire day in Issaquah for
implementer/user feedback (mostly Intel)

* Plan: forward it to LWG at next meeting for C++26

std::simd: Pave the way for (via a few ADL
fixes/restrictions):

* non-member operator(]
* overloadable operator:?

constexpr reinterpret_cast from void*
* to allow constexpr std::format, std::function, std::any

Non-transient constexpr allocation
* moving CT heap memory to RT

Generation of messages for static_assert
e also: general messages during compilation

Pattern matching

Contracts
* settled on MVP for C++26 and discussed potential TS

lgnorability of standard attributes
* standard attributes must be syntax checked

* anon-zero __has_cpp_attribute means the compiler is
“pretty gosh darn sure” to implement the
recommended practice

« paper pending to synchronize with C

C++26 progress

* Talk: The Val object model, Dave
Abrahams

e Chris Lattner: C++ has value semantics,
but nobody uses it

* Fortran is often claimed to be faster than
C++, because it does not have aliasing

* New alternative to std::error_code

» Senders & Receivers (std::execution)
on track

* Networking effort

* seems dead for now, previous authors do
not want to continue based on S&R

* however: new S&R based proposal by
different author

do statements, and do_yield
e autov =do { statements...; do_yield res; }

constexpr_t
* Generalization of std::integral _constant

C23 compatibility

Hazard pointers
Read-copy-update (RCU)
Synchronized value (a T + mutex)
Philox RNG engine

Statistical functions

fiber _context
 stackful context switching

Kona evening session: Future of C++

* Background: NIST minimum standards for software * Any unsafe code can still be validated and then be

verification: “Some languages, such as C and C++, declared safe
are not memory-safe . ﬁani: a Rgsr;c rBodeI checé<e|r fgr ul(r_safekparts:

* Safety is a property of operations and composes, ttps'//g't ub.com/model-chec fng/ A .
safe/unsafe operations could be clearly defined, * Idea: run with UBSan turned on in production,
only safe ones allowed in some parts of a program otherwise you are unsafe

* Path to safety: detect precondition violations and) §g2¥5t”ed UBSan in production for "The Last of Us™

either stop the program or throw. Or lift

preconditions and define result for nonsense input. * Most vulnerabilities not in the domain of UBSan

* Google: running all sanitizers together in production:

* In any save sub-language, some programs will be 50% overhead
suboptlmal * Hardware acceleration can get this overhead very low
. E"%{: Rust needs unsafe to build an optimal doubly- * ARM Memory Tagging Extension
linked list. Cannot have safety in C++ without sacrificing * Running ASan in production increases attack surface

some performance.)
. Definine the right line bet fe/ ¢ e 7% of all C++ users come from Unreal engine
efining the right lin€ bEtWeEN sate/unsare * Rust was considered for game development and

features important. Safe part must not be too abandoned
complex.

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/recommended-minimum-standards-vendor-or
https://github.com/model-checking/kani
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety

Issaquah: SG23 Safety and Security

* Prelude (mailing list): NSA officially recommends organizations to shift to memory safe languages
(C#, Go, Java, Ruby, Swift) over C and C++

* Big discussions on safety profiles for C++
* Generalizing the safe/unsafe distinction of languages like Rust
* We want something, but we don't know what yet :)

* MS deployed some software in Rust. Main takeaway: Rust makes you rethink how you design
code, once you grasp that, you can just as well write (safer) C++ again.

. Encoura%e more work on C++ safety profiles and features, a la [[trusted]], [[invalidating]],
[[not_null]], [[check(range)]], [[check(type_ safety)]], ...

« Zero-initialize objects of automatic storage duration P2723: SG23/EWG consensus

* Later (mailing list)
* US National Cybersecurity Strategy (fact sheet): shifting liability for software products and services to
promote secure development practices

* EU Cyber Resilience Act (article): will impose general regulations on most software, based on a standard to be
written, huge fines, carve-out for OSS, but explicitly calls out Linux, Chrome, Firefox, ...

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy/
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://berthub.eu/articles/posts/eu-cra-secure-coding-solution/

What's next

e C++23 isdone
* Going through final ISO ballot now

* Implementation status: g++/clang++
almost feature complete for language
changes, halfway for standard library

* Work on C++26 has begun, first items
are ready for plenary in Varna

Completed
C++23

Issaquah, WA, USA
(2023)

* Next meetings
e \Varna, Bulgaria in June 2023
e Kona, Hawaii in November 2023

* Tentative for 2024: Japan, Stockholm
(Sweden), Wroctaw (Poland)

2023-03-13

: 'ﬁ‘ gayy TR
= }~¢ ' 7

s'."q_'

https://en.cppreference.com/w/cpp/compiler_support/23
https://isocpp.org/files/papers/N4935.pdf
https://isocpp.org/files/papers/N4936.pdf

So, what's in C++23? — Language

* if consteval * More constexpr <cmath> functions
* Explicit object parameter/deducing ¢ static operator() and operator(]

this « CTAD for inherited constructors
 f#telifdef, #elifndef

* Multidimensional operator]]

* [[assume(expr)]]
e Better Unicode handling

* #warning e Lifetime extension of temporaries
* More stuff allowed in constexpr in range-for head

 Mandated declaration order layout ¢ Decay copy: auto(x)

for class types * UTF-8 support as source file enc.
* Attributes on lambdas ¢

2023-03-13 Complete list: https://en.cppreference.com/w/cpp/23 13

https://en.cppreference.com/w/cpp/23

So, what's in C++237? — Library

 std::stacktrace e std::mdspan
 std::string::contains(...) e std::flat_[multi]set
e std::out_ptr, std::iinout_ptr e std::flat_[multilmap
* constexpr std::optional, std::variant, e std::print

std::unique_ptr, std::bitset

 Monadic functions for std::optional and
std::expected P * std::expected

e Ranges/Views: zip, starts/ends_with, to, * std::unreachable
iota, shift_left/right, chunk, slide, stride, * std::generator
contains, cartesian_product, repeat,
enumerate, ...

* Formatting: ranges, thread::id, stacktrace

 std::format compile time format string
check

e std::byteswap

* import std

» extended FP types (std::float16, ...,
std::float128, std::bfloat16)

e std::move_only function

2023-03-13

Thanks

e Questions?

e Other trip reports:
e July 2022 ISO C++ committee virtual meeting report, Timur Doumler
 Autumn ISO C++ standards meeting (Kona), Herb Sutter, after Kona
* C++23 “Pandemic Edition” is complete, Herb Sutter, after Issaquah

2023-03-13

15

https://blog.jetbrains.com/clion/2022/07/july-2022-iso-cpp/
https://herbsutter.com/2022/11/12/trip-report-autumn-iso-c-standards-meeting-kona/
https://herbsutter.com/2023/02/13/c23-pandemic-edition-is-complete-trip-report-winter-iso-c-standards-meeting-issaquah-wa-usa/

Backup slides

Can | participate?

Rules changed recently
* Previously: everybody was free to join as “observer” multiple times
* Now: this can only be done once and needs prior notice (ISO requirement)

* Observers can fully participate and vote in SGs, but not in plenary
* Only registered NB members can vote in plenary

e Regular participation requires joining a NB
e Either the NB where you or your employer is situated (for CERN: SNV)
* May be subject to fees, full voting rights
* As alternate representative of the Standard C++ Foundation
* For free, but without plenary voting rights

Lots of discussion also on mailing lists (= “reflectors”), some are public:
https://lists.isocpp.org

https://isocpp.org/std/meetings-and-participation

2023-03-13

https://lists.isocpp.org/
https://isocpp.org/std/meetings-and-participation

	Slide 1: C++ standardization and Kona/Issaquah trip reports
	Slide 2: The committee
	Slide 3: Progress and status
	Slide 4: Study groups (SGs)
	Slide 5: Papers
	Slide 6: Recent meetings
	Slide 7: Ready for C++26 plenary
	Slide 8: C++26 progress
	Slide 9: C++26 progress
	Slide 10: Kona evening session: Future of C++
	Slide 11: Issaquah: SG23 Safety and Security
	Slide 12: What's next
	Slide 13: So, what's in C++23? – Language
	Slide 14: So, what's in C++23? – Library
	Slide 15: Thanks
	Slide 16: Backup slides
	Slide 17: Can I participate?

