
Evaluating SPACK
for

CMS offline Software
SFT Group Meeting

13th Mar 2023

CMS Software Stack

2

CMS Offline Software Stack
❖ CMSSW: Software and services needed by the simulation, calibration and

alignment, and reconstruction
➢ 5.5M code lines:

■ 66% C/C++, 27% Python, 5% fortran and rest are build-rules/data files
➢ 17 active release cycles: 5.3, 8.0, 9.4 up to 13.0/13.1

■ 13.1.X development release cycle has 15 flavors
● ROOT, GEANT, CLANG, LTO, Multi-Vectorization, ASAN, UBSAN etc.
● Build for multiple OS/Arch/Compilers (cc7/el8/el9, x86_64/arm/power…)

➢ Build production: 2.5K shared libs/plugins, 1K binaries

❖ 650 external tools needed to build/run

3

https://github.com/cms-sw/cmssw

❖ CMS Offline Software Build/Packaging system consists of various
components
➢ SCRAM: Software Configuration, Release and Management tool
➢ CMSSW-Config: Build rules based on gmake
➢ PKGTOOLS: Packaging system based on Redhat Package Manager (RPM)
➢ CMSPKG: Software distribution and Installation/Deletion tool
➢ CMSDIST: The build recipes for building the package

❖ All of these are though customized for CMS offline SW but can be used by
other projects
➢ LCG Projects were using SCRAM in past to build POOL/CORAL.
➢ CMS still builds copy of CORAL using SCRAM

CMS Offline Software Build/Packaging System

4

More
details in
backup
slides

https://github.com/cms-sw/SCRAM
https://github.com/cms-sw/cmssw-config
https://github.com/cms-sw/pkgtools
https://github.com/cms-sw/cmspkg
https://github.com/cms-sw/cmsdist

CMS Package System: Summary
❖ All tools used for building/distribution/installation are independent

of CMSSW releases/OS/archs/compilers
➢ Except for CMSDIST where though most of build recipes are shared between

releases/OS/archs/compilers but we have separate git branches for each release/compiler
➢ Build recipes do not depend of packaging/distribution tools so can be easily backported

to older release cycles
❖ All tools are very stable and require low maintenance

➢ Few commits per year (mostly for additional features)
➢ Over all 40K lines of code to maintain

■ 20K lines are stable and independent of CMSSW releases/OS/archs/compilers
■ 20K lines of build recipes gets most of the changes and mostly for

development release cycles

5

SPACK
Let’s dive into SPACK world

6

SPACK
❖ SPACK flexible package manager for HPC software

➢ A lot of development for/from HEP experiments in last 6 years
➢ Supports multiple version and configurations of software
➢ Single package file to have all supported versions, configurations and variants of the

software

❖ Just not a package manager but supports software distribution and
installation
➢ Binary relocatable packages

❖ PKGTOOLS, CMSPKG and CMSDIST all in one
➢ Also covers part of SCRAM e.g package env setup (spack load/unload)
➢ Interferes with build rules too via its compiler wrappers

7

Why we looked in to SPACK
❖ Large community specially after 2016 when HEP exp start looking in to it
❖ HSF recommends SPACK for HEP community

➢ LCG/SPI team looking in to it since 2020

❖ +6.5K built-in package recipes

8

❖ Out of the box RPATH/RUNPATH builds
➢ No LD_LIBRARY_PATH required at runtime

❖ Python based simple package recipes
❖ Ivan Razumov, joined CMS in May 2021

➢ 1.5y of experience building LCG packages w/ SPACK
➢ A very active contributor of SPACK (>700 PRs)

❖ After 22 months long roller coaster ride, Ivan finally had managed to build
CMSSW externals software stack
➢ Had to rewrite package recipes multiple time due to fast moving SPACK development

■ v0.16, v0.17, v0.18
➢ Final implementation uses inheritance

■ SPACK v0.19.0
❖ CMS SPACK env contains 650 packages

➢ 350 package recipes from upstream SPACK
➢ 300 in cms-spack repository

■ 100 CMS specific (including +80 cms-data)
■ 140 use built-in package with CMS specific patches/sources/changes
■ 60 recipes are rewritten (mostly copied and changed according to CMS needs)

Building CMS Software stack using SPACK

9

10

SPACK
Few major design/scalability issues

Package recipes: are they really simple … ?
❖ Yes they are simple/readable for first version, single configuration
❖ SPACK package recipes contain all

versions/configurations/variants/build systems in single file
➢ Over the time these recipes become a nightmare to manage specially when you had to

backport changes to few years old software stack
■ LZ4: 10 to 50+ lines
■ ROOT: 60 to 650+ lines
■ Python: 25 to 1.5K lines
■ Boost: 60 to 740 lines

➢ Package recipe grows only (unless someone does a cleanup)

11

spack cmsdist

Package recipe: LZ4 package

LZ4 package
With only one variant

12

SPACK

LZ4 single version

CMSDIST

Compiler Wrappers
❖ SPACK provide compiler wrappers (800 lines of bash script) which are added in

to PATH before the build process
❖ Compiler wrappers are the heart and soul of SPACK and are the magic behind

➢ Injecting compilation flags
■ RPATH/RUNPATH
■ -Idirs for dependencies during building phase
■ -Ldirs for dependencies during link phase
■ Common flags: enabling debug mode, optimization etc.

➢ Achieving the simple package recipes
■ Many packages recipes have misused this feature and do not pass the required

parameters to build system (autoconf/make/cmake)
❖ Disabling include/library directories injection shows that many packages

either failed to build or pick up system packages
➢ My test only checked single version/configuration/variant

13

Compiler Wrappers: Injection of includes paths
❖ Build System generated command

❖ SPACK’s compiler wrapper generated command

❖ Overall 25% increase in cmssw build time (2h25 vs 3h15)
➢ 16 Cores VM; building everything on SSD storage

> compiler options -{I|isystem}{include_dirs|system_dirs} options

> compiler options -I{include_dirs} -isystem{include_dirs} \

 -I{SPACK_INCLUDE_DIRS}|-isystem{SPACK_INCLUDE_DIRS} \

 -I{system_dirs} -isystem{system_dirs} options

14

Extra include
paths of package
dependencies

Compiler Wrappers: Injecting -I/-L …
❖ CMSSW depends on large number of external packages

➢ 200 of these have include directories
➢ 325 have lib/lib64 directories

❖ Injecting over 200 -Idirs means compiler has to go through all these to find
system/compiler headers
➢ A lot of IO operations (specially if you are taking most of the externals from CVMFS or

shared file system)

15

Strace: compiling a source file with just two includes i.e iostream/string

GCC SPACK
GCC

1.5K IO errors 36K IO errorsFor actual CMSSW
sources strace
reported 100K-230K
IO errors
(see backup slides)

Compiler Wrappers: Injecting -Idirs/-Ldirs …
❖ Extra -Idirs can override some system/compiler header

➢ CMSSW failed to build as one of external package provide a conflicting system header
■ There could be more externals doing this

➢ Multiple packages providing the same header file can cause build/runtime issues
❖ Adding -Idirs/-Ldirs does not guarantee that you pick up externals

from SPACK build
➢ Many packages now a days bundle/download/build packages internally

■ Tensorflow does it for tons of externals
■ ONNXtime does the same
■ Root also has many internal built-in packages

➢ You either need to patch or configure the package to use your external or make sure that
external package versions are identical (with same patches applied)

16

Compiler Wrappers: Debugging long commands

❖ Long compile/link commands
➢ Package build logs only contain compile/link commands generated by build system

■ Extra flags/optins added by spack are not visible

❖ Really hard for developers of the package to debug the issue
➢ Developers use their build system to build a package.

■ They are only interested to know which configure and build options were used

17

gcc / spack Compile Link

Smallest 670 / 41K 2K / 165K

Longest 12K / 53K 44K / 207K

CMSSW compile/link command length comparison

+40K +160K

SPACK code base
❖ Very active projects

➢ Gets many updates/fixes every week (avg 100
commits/week)

❖ 345K lines of python code
➢ 135K in core spack lib

18

11/20 - 11/21

11/21 - 05/22

05/22 - 11/22

11/22 - 02/23

190K lines changed

150K lines changed

450K lines changed
350K due to formatting

125K lines changed

❖ SPACK is moving target, so one can not use head of it
➢ Projects needs to start with a tagged version and then ….
➢ Rest of the life of your release you have to maintain that SPACK code base

 el Y.a el Y.b

 el X.0 el X.n el X.10

SPACK in large scale projects

19

Patches/version updates/new externals from
upstream spack
Changes backported to cms-spack for older
CMSSW release cycles

 vN(0.19.0) vN+x vN+y ……..
Spack Releases

13.0
CMS-SPACK

13.1
CMS-SPACK

14.0
CMS-SPACK pre1 pre2 preN 14.0.0 14.0.1

pre1 pre2 preN 13.0.0 13.0.1

pre1 pre2 preN 13.1.0 13.1.1

Software stack install time
❖ cmspkg takes 15mins to deploy full CMSSW software stack

➢ CMSSW + dependencies (including bootstrap, GCC)

❖ SPACK takes 2hours to install CMS software stack (without GCC)
➢ Installs one package at a time
➢ For simple packages (with nothing to relocate) it takes (on average) 5-6s to

download/install
■ For 650 packages it is already 1 hour

➢ For complex packages (with a lot of libraries/binaries) the install time is very high
■ CMSSW with over 4K binary products took 30 mins to install

➢ It can easily add, at least, additional couple of hours for Pull Request testing

20

SPACK DB
❖ SPACK maintains a json file as DB to keep track of installed packages

➢ Single package insertion at a time
❖ DB Insert time linearly increases based on DB size
❖ CMS Software for unique combination of OS/arch/Compiler goes under

single install path
➢ slc7_amd64_gcc900: 8K packages in 2.5y
➢ el8_amd64_gcc11: 2.1K packages in 9m

21

❖ Install time will only increase with time
❖ What if SPACK decided to change DB structure

➢ Sqlite implementation #34655
➢ We might not be able to use two different

SPACK versions to install under same path

Simple JSON
read/insert/write

https://github.com/spack/spack/pull/34655

22

SPACK
Some minor issues which can be fixed in future releases

CMS Software stack: Build time w/o GCC and CMSSW

❖ Test were done on 16 Cores VM with 120GB memory with SSD
❖ SPACK builds single package at a time: Larger the machine bigger the

waste
➢ Parallel build support might improve but I was not able to tests it

PKGTOOLS/CMSDIST
7h40m

SPACK
13h40m

23

Software stack install time: Parallel install
❖ SPACK parallel build/install fix applied

➢ Updated SPACK DB lock wait time to 60s (instead of 3s)
❖ SPACK install with -j16 failed

➢ For some unknown reason it start rebuilding packages
❖ SPACK install with -j2 worked but took more time than serial mode

➢ 2h40m to install cmssw + dependencies (without GCC)
■ 30mins to install CMSSW alone
■ Might take more time if cmssw was built with runpath

24

Environment setup
❖ SPACK provides various ways to use an installed package

➢ spack load/unload
➢ spack environment

■ Bundle many related packages and activate all of them at once
➢ spack environment modules

■ SPACK generates module files which one can use with module load/purge

❖ All of these failed for large software stack
➢ For large software stacks, the generated env is so large that it exceeds the max

argument size (2MB)

25

> which python3
/usr/bin/python3
> spack load python-tools@3.0
> which python3
bash: /usr/bin/which: Argument list too long

Setting only the Python tools env (330 packages): slow as compared to CMSDIST: <1s vs >40s
> which python3
/usr/bin/python3
> module load python-tools-3.0-gcc-11.2.1-ovyelip
> which python3
bash: /usr/bin/which: Argument list too long

Package dependency on all Build systems
❖ Every SPACK package loads all the build system known to SPACK

➢ Why we should care about it?
■ We have to either fix or remove the Build System if it fails due to python version

updates within EL distros
● EL8 has python 3.6, 3.8 and 3.9
● EL9 has python 3.9 and 3.10

26

Missing system dependency checks
❖ PKGTOOLS/CMSDIST uses RPM to build CMS Offline packages

➢ We maintain our own RPM DB to control what our packages can pick up from system
➢ RPM post build checks make sure that packages we build do not accidentally depend on

any thing which is not in our RPM DB
➢ This helped use control our system level dependencies and allowed CMS Offline SW to

work (build/run) with in a major EL release cycle

❖ https://github.com/spack/spack/pull/28109 provides a partial
implementation
➢ Opened since Dec 2021
➢ Uses ldd and hardcoded list of system libs

■ This functionality is not any way near to what rpmdeps provides
➢ Shows that SPACK package can randomly pick up system libraries

27

https://github.com/spack/spack/pull/28109

Some other random things
❖ SPACK concretize your whole env even if you want to build single package

➢ Copies all the patches of all the versions/variants for all packages in your env
➢ Might be very annoying for developers

❖ SPACK compiles/generates byte code for all the packages known to it (6.7K)
➢ So you have to maintain all packages even if you do not use those

❖ No easy way to search binary caches for installation
➢ We use tricks like copying a pre-concretized lock file (from the build step) to tell SPACK what to

install
❖ We still have no experience with multiple parallel builds building/uploading

same package
❖ Relatively large distribution size: +15% (45G vs 39G)

28

> ls var/spack/repos/builtin/packages/*/__pycache__/package.cpython-36.pyc |wc -l
 6753

Summary
❖ SPACK is nice tool for small env with relatively small deps and life cycles

➢ CMS Software stack life cycle is even longer than EL distros

❖ Along with all the slowness/issues (as compare to existing CMS Packaging
system), it also comes with high maintenance overhead

❖ Package recipes are not written with much care and will break any large
software stack sooner or later
➢ Specially for SW stack with multiple ML tools which maintain/build their own deps

❖ I am sure I might have missed many nice features of SPACK but things
which matters most for CMS software stack do not look good

❖ I am afraid it is not the right tool for packaging large software stacks

29

30

Backup

CMSSW: External Package Dependency

Python_Tools

31

Represents a
group node e.g
all python
based packages
in single node

https://muzaffar.web.cern.ch/cmssw.jpeg

CMS Software stack: Python Packages Dependency

32

25 levels deep

https://muzaffar.web.cern.ch/python_tools.jpeg

SCRAM
❖ CMS Software Configuration, Release and Management tool

➢ Build System
➢ Software Development and runtime environment setup

❖ Since 1998, this is the only tool CMS has used to build offline software
➢ Initially written in PERL but in 2020/21 it was rewritten in PYTHON

■ Reduced code base: V2: 8.5K Perl, V3: 3.5K Python

❖ Backward compatibility within a SCRAM major version
➢ SCRAM V2 latest version can still build and set env for 12 year old CMSSW_3_9

❖ It has been very stable and has not shown any sign of aging

33

https://github.com/cms-sw/SCRAM

CMSSW-Config
❖ Build rules for CMS offline software

➢ gmake based rules
■ 3.5K lines of GMAKE
■ 3.3K of Python : To convert XML based rules in to gmake targets

➢ SCRAM uses these rules to build CMSSW/FWLite/CORAL

❖ Provides hooks for SCRAM to dynamically set build/run time environment
➢ CUDA Runtime
➢ Micro-architectures

34

https://github.com/cms-sw/cmssw-config

CMSSW-Config…
❖ CMSSW build rules are result of many years of work
❖ Build rules has been profiled multiple time to maximize the utilization of

build and development resources
➢ We avoid long PATH, LD_LIBRARY_PATH, PYTHONPATH, CMSSW_SEARCH_PATH

■ libs, bins, data and python modules under single directory
● Just like view concept of LCG/Spack but CMS has been using it since 2008

➢ Running of all executables with full paths to avoid searching those in PATH
➢ Avoid duplication of -Iincdir, -Llibdir to improve the compile/link time
➢ Proper (transitive) dependency handling to avoid passing of extra -Idir
➢ Compact GMake rules in few files instead of many small ones

■ Smaller files (e.g. one per binary/library) takes a lot of time to load

35

PKGTOOLS
❖ CMS Offline Packaging tool

➢ Build packages and their dependencies from sources
➢ Written in PYTHON and uses Redhat Package Manager (RPM) as backend for building

and installing packages
➢ Nearly 200K binary packages in the repository for various OS, archs and compilers

■ 6.7K CMSSW releases

❖ Very stable and requires low maintenance
➢ 5K lines of PYTHON code
➢ Single version to build full software stack of all CMSSW release cycles

36

https://github.com/cms-sw/pkgtools

CMSPKG
❖ Package distribution and installation tool. PKGTOOLS uses it to

➢ download and install prebuilt packages
➢ Upload newly build packages

❖ It was developed to replace apt/yum usage
❖ Uses RPM dependency information instead

of maintaining its own dependency DB
❖ <15m to install full pre-build CMS-SW stack
❖ One version to install any package

➢ Used by all CMSSW release cycles/archs
➢ 2K Python, 2K bash lines of code (bootstrap

script)

37

https://github.com/cms-sw/cmspkg

CMSDIST
❖ Collection of build recipes

➢ RPM Spec files to provide the actual build/install instructions and packages requirements
■ Uses BASH for build recipes

Setup sources

Build

Install

❖ 650 package recipes
➢ 320 Python packages
➢ 90 data packages

❖ One version/configuration per package
➢ Multiple version supported via separate SPECs

❖ 20K lines of build recipes

38

https://github.com/cms-sw/cmsdist

CMSDIST…
❖ Supports automatic generation of packages

➢ Pip based packages
➢ CMSSW Data packages
➢ Multi-Vectorization packages zlib, zlib_haswell, zlib_skylake-avx512 etc.

❖ Non-root installation by creating a separate RPM DB
➢ Well controlled system package dependency
➢ RPM post build dependency checks: To make sure we do not use anything outside our

control

39

Pip based Python packages
- requirements.txt
- dependabot notification about

Security issues

CM
SSW

 data

pack
ages

h5py

Compiler Wrappers: Injecting -I/-L CMSSW sources
Alignment/CocoaDaq/src/CocoaDaqRootEvent.cc:1 include (indirectly
include few root headers)

40

❖ DQM/Physics/src/plugins.cc: 1055 includes
230K IO errors

108K IO errors

GCC

GCC

SPACK
GCC

SPACK
GCC

5.5K IO errors

42K IO errors5 to
 20 ti

m
es m

ore
 IO

 erro
rs

rpath/runpath Issues
❖ RPATH/RUNPATH are great and works for most of the cases

➢ No need to set global LD_LIBRARY_PATH which can break other tools
■ CMSSW env breaks CMS Computing env

❖ Does not work for packages with stubs libraries which are suppose to
be loaded from correct path at runtime
➢ cuda
➢ dpm
➢ tkonlinesw

❖ Can not use RPATH if your software stack has packages with stubs
libs
➢ RUNPATH works but then you need to set LD_LIBRARY_PATH to load the correct library

at runtime

41

Life without LD_LIBRARY_PATH
❖ No CMSSW Patch release

➢ CMSSW libraries loaded from full release will load all shared libraries from full release
even if those are available in patch release

❖ No CMSSW developer area
➢ Same issue as patch release

❖ No usage of packages with stubs libraries
➢ cuda

❖ No multi micro-architectures builds
➢ Which needs to load different vectorization library at runtime

❖ Lose the ability to build an external and test in developer area
➢ Developers of externals e.g. root/geant4 etc. use their build system to build and use it

directly in cmssw by updating the tool file
❖ ROOT dictionaries loading does not work

42

