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CMS Offline Software Stack
❖ CMSSW: Software and services needed by the simulation, calibration and 

alignment, and reconstruction
➢ 5.5M code lines:

■ 66% C/C++, 27% Python, 5% fortran and rest are build-rules/data files
➢ 17 active release cycles: 5.3, 8.0, 9.4 up to 13.0/13.1

■ 13.1.X development release cycle has 15 flavors
● ROOT, GEANT, CLANG, LTO, Multi-Vectorization, ASAN, UBSAN etc.
● Build for multiple OS/Arch/Compilers (cc7/el8/el9, x86_64/arm/power…)

➢ Build production: 2.5K shared libs/plugins, 1K binaries 

❖ 650 external tools needed to build/run
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https://github.com/cms-sw/cmssw


❖ CMS Offline Software Build/Packaging system consists of various 
components
➢ SCRAM: Software Configuration, Release and Management tool
➢ CMSSW-Config: Build rules based on gmake
➢ PKGTOOLS: Packaging system based on Redhat Package Manager (RPM)
➢ CMSPKG: Software distribution and Installation/Deletion tool
➢ CMSDIST: The build recipes for building the package

❖ All of these are though customized for CMS offline SW but can be used by 
other projects
➢ LCG Projects were using SCRAM in past to build POOL/CORAL.
➢ CMS still builds copy of CORAL using SCRAM

CMS Offline Software Build/Packaging System
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More 
details in 
backup 
slides

https://github.com/cms-sw/SCRAM
https://github.com/cms-sw/cmssw-config
https://github.com/cms-sw/pkgtools
https://github.com/cms-sw/cmspkg
https://github.com/cms-sw/cmsdist


CMS Package System: Summary
❖ All tools used for building/distribution/installation are independent 

of CMSSW releases/OS/archs/compilers
➢ Except for CMSDIST where though most of build recipes are shared between 

releases/OS/archs/compilers but we have separate git branches for each release/compiler
➢ Build recipes do not depend of packaging/distribution tools so can be easily backported 

to older release cycles
❖ All tools are very stable and require low maintenance

➢ Few commits per year (mostly for additional features)
➢ Over all 40K lines of code to maintain

■ 20K lines are stable and independent of CMSSW releases/OS/archs/compilers
■ 20K lines of build recipes gets most of the changes and mostly for 

development release cycles 
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SPACK
Let’s dive into SPACK world
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SPACK
❖ SPACK flexible package manager for HPC software

➢ A lot of development for/from HEP experiments in last 6 years
➢ Supports multiple version and configurations of software
➢ Single package file to have all supported versions, configurations and variants of the 

software

❖ Just not a package manager but supports software distribution and 
installation
➢ Binary relocatable packages

❖ PKGTOOLS, CMSPKG and CMSDIST all in one
➢ Also covers part of SCRAM e.g package env setup (spack load/unload)
➢ Interferes with build rules too via its compiler wrappers
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Why we looked in to SPACK
❖ Large community specially after 2016 when HEP exp start looking in to it
❖ HSF recommends SPACK for HEP community

➢ LCG/SPI team looking in to it since 2020

❖ +6.5K built-in package recipes
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❖ Out of the box RPATH/RUNPATH builds
➢ No LD_LIBRARY_PATH required at runtime

❖ Python based simple package recipes
❖ Ivan Razumov, joined CMS in May 2021

➢ 1.5y of experience building LCG packages w/ SPACK
➢ A very active contributor of SPACK (>700 PRs)



❖ After 22 months long roller coaster ride, Ivan finally had managed to build 
CMSSW externals software stack
➢ Had to rewrite package recipes multiple time due to fast moving SPACK development

■ v0.16, v0.17, v0.18
➢ Final implementation uses inheritance

■ SPACK v0.19.0
❖ CMS SPACK env contains 650 packages

➢ 350 package recipes from upstream SPACK
➢ 300 in cms-spack repository

■ 100 CMS specific (including +80 cms-data)
■ 140 use built-in package with CMS specific patches/sources/changes
■ 60 recipes are rewritten (mostly copied and changed according to CMS needs)   

Building CMS Software stack using SPACK
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SPACK
Few major design/scalability issues



Package recipes: are they really simple … ?
❖ Yes they are simple/readable for first version, single configuration
❖ SPACK package recipes contain all 

versions/configurations/variants/build systems in single file
➢ Over the time these recipes become a nightmare to manage specially when you had to 

backport changes to few years old software stack
■ LZ4:        10 to  50+ lines
■ ROOT:    60 to 650+ lines
■ Python: 25 to 1.5K lines
■ Boost:    60 to 740 lines

➢ Package recipe grows only (unless someone does a cleanup)
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spack cmsdist



Package recipe: LZ4 package

LZ4 package
With only one variant
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SPACK

LZ4 single version

CMSDIST



Compiler Wrappers  
❖ SPACK provide compiler wrappers (800 lines of bash script) which are added in 

to PATH before the build process
❖ Compiler wrappers are the heart and soul of SPACK and are the magic behind 

➢ Injecting compilation flags
■ RPATH/RUNPATH
■ -Idirs for dependencies during building phase
■ -Ldirs for dependencies during link phase
■ Common flags: enabling debug mode, optimization etc.

➢ Achieving the simple package recipes
■ Many packages recipes have misused this feature and do not pass the required 

parameters to build system (autoconf/make/cmake)
❖ Disabling include/library directories injection shows that many packages 

either failed to build or pick up system packages
➢ My test only checked single version/configuration/variant
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Compiler Wrappers: Injection of includes paths
❖ Build System generated command

❖ SPACK’s compiler wrapper generated command

❖ Overall 25% increase in cmssw build time (2h25 vs 3h15)
➢ 16 Cores VM; building everything on SSD storage

> compiler options  -{I|isystem}{include_dirs|system_dirs} options

> compiler options  -I{include_dirs} -isystem{include_dirs} \

   -I{SPACK_INCLUDE_DIRS}|-isystem{SPACK_INCLUDE_DIRS} \

   -I{system_dirs} -isystem{system_dirs} options
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Extra include 
paths of package 
dependencies



Compiler Wrappers: Injecting -I/-L …
❖ CMSSW depends on large number of external packages

➢ 200 of these have include directories
➢ 325 have lib/lib64 directories

❖ Injecting over 200 -Idirs means compiler has to go through all these to find 
system/compiler headers
➢ A lot of IO operations (specially if you are taking most of the externals from CVMFS or 

shared file system)
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Strace: compiling a source file with just two includes i.e iostream/string 

GCC SPACK
GCC

1.5K IO errors 36K IO errorsFor actual CMSSW 
sources strace 
reported 100K-230K 
IO errors
(see backup slides)



Compiler Wrappers: Injecting -Idirs/-Ldirs …
❖ Extra -Idirs can override some system/compiler header

➢ CMSSW failed to build as one of external package provide a conflicting system header
■ There could be more externals doing this

➢ Multiple packages providing the same header file can cause build/runtime issues
❖ Adding -Idirs/-Ldirs does not guarantee that you pick up externals 

from SPACK build
➢ Many packages now a days bundle/download/build packages internally

■ Tensorflow does it for tons of externals
■ ONNXtime does the same
■ Root also has many internal built-in packages

➢ You either need to patch or configure the package to use your external or make sure that 
external package versions are identical (with same patches applied)
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Compiler Wrappers: Debugging long commands

❖ Long compile/link commands
➢ Package build logs only contain compile/link commands generated by build system

■ Extra flags/optins added by spack are not visible

❖ Really hard for developers of the package to debug the issue
➢ Developers use their build system to build a package.

■ They are only interested to know which configure and build options were used
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gcc / spack Compile Link

Smallest 670 / 41K 2K / 165K

Longest 12K / 53K 44K / 207K

CMSSW compile/link command length comparison

+40K +160K



SPACK code base
❖ Very active projects

➢ Gets many updates/fixes every week (avg 100 
commits/week)

❖ 345K lines of python code
➢ 135K in core spack lib
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11/20 - 11/21

11/21 - 05/22

05/22 - 11/22

11/22 - 02/23

190K lines changed

150K lines changed

450K lines changed
350K due to formatting

125K lines changed



❖ SPACK is moving target, so one can not use head of it
➢ Projects needs to start with a tagged version and then ….
➢ Rest of the life of your release you have to maintain that SPACK code base

    
                                                                                      el Y.a                                                            el Y.b

        el X.0                                                                   el X.n                                                            el X.10

SPACK in large scale projects
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Patches/version updates/new externals from 
upstream spack
Changes backported to cms-spack for older
CMSSW release cycles

     vN(0.19.0)                 vN+x                                     vN+y                 ……..
Spack Releases

13.0
CMS-SPACK

13.1
CMS-SPACK

14.0
CMS-SPACK pre1          pre2       preN      14.0.0    14.0.1

pre1          pre2       preN          13.0.0    13.0.1

pre1          pre2       preN            13.1.0  13.1.1



Software stack install time
❖ cmspkg takes 15mins to deploy full CMSSW software stack

➢ CMSSW + dependencies (including bootstrap, GCC)

❖ SPACK takes 2hours to install CMS software stack (without GCC)
➢ Installs one package at a time
➢ For simple packages (with nothing to relocate) it takes (on average) 5-6s to 

download/install
■ For 650 packages it is already 1 hour

➢ For complex packages (with a lot of libraries/binaries) the install time is very high
■ CMSSW with over 4K binary products took 30 mins to install

➢ It can easily add, at least, additional couple of hours for Pull Request testing
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SPACK DB
❖ SPACK maintains a json file as DB to keep track of installed packages

➢ Single package insertion at a time
❖ DB Insert time linearly increases based on DB size
❖ CMS Software for unique combination of OS/arch/Compiler goes under 

single install path
➢ slc7_amd64_gcc900: 8K packages in 2.5y
➢ el8_amd64_gcc11: 2.1K packages in 9m
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❖ Install time will only increase with time
❖ What if SPACK decided to change DB structure

➢ Sqlite implementation #34655
➢ We might not be able to use two different 

SPACK versions to install under same path

Simple JSON
read/insert/write

https://github.com/spack/spack/pull/34655


22

SPACK
Some minor issues which can be fixed in future releases



CMS Software stack: Build time w/o GCC and CMSSW

❖ Test were done on 16 Cores VM with 120GB memory with SSD 
❖ SPACK builds single package at a time: Larger the machine bigger the 

waste
➢ Parallel build support might improve but I was not able to tests it

PKGTOOLS/CMSDIST
7h40m

SPACK
13h40m
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Software stack install time: Parallel install
❖ SPACK parallel build/install fix applied

➢ Updated SPACK DB lock wait time to 60s (instead of 3s)
❖ SPACK install with -j16 failed

➢ For some unknown reason it start rebuilding packages
❖ SPACK install with -j2 worked but took more time than serial mode

➢ 2h40m to install cmssw + dependencies (without GCC)
■ 30mins to install CMSSW alone
■ Might take more time if cmssw was built with runpath
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Environment setup
❖ SPACK provides various ways to use an installed package

➢ spack load/unload
➢ spack environment 

■ Bundle many related packages and activate all of them at once
➢ spack environment modules

■ SPACK generates module files which one can use with module load/purge

❖ All of these failed for large software stack
➢ For large software stacks, the generated env is so large that it exceeds the max 

argument size (2MB)
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> which python3
/usr/bin/python3
> spack load python-tools@3.0
> which python3
bash: /usr/bin/which: Argument list too long

Setting only the Python tools env (330 packages): slow as compared to CMSDIST: <1s vs >40s
> which python3
/usr/bin/python3
> module load python-tools-3.0-gcc-11.2.1-ovyelip
> which python3
bash: /usr/bin/which: Argument list too long



Package dependency on all Build systems
❖ Every SPACK package loads all the build system known to SPACK

➢ Why we should care about it?
■ We have to either fix or remove the Build System if it fails due to python version 

updates within EL distros
● EL8 has python 3.6, 3.8 and 3.9
● EL9 has python 3.9 and 3.10 
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Missing system dependency checks
❖ PKGTOOLS/CMSDIST uses RPM to build CMS Offline packages

➢ We maintain our own RPM DB to control what our packages can pick up from system
➢ RPM post build checks make sure that packages we build do not accidentally depend on 

any thing which is not in our RPM DB
➢ This helped use control our system level dependencies and allowed CMS Offline SW to 

work (build/run) with in a major EL release cycle

❖ https://github.com/spack/spack/pull/28109 provides a partial 
implementation
➢ Opened since Dec 2021
➢ Uses ldd and hardcoded list of system libs

■ This functionality is not any way near to what rpmdeps provides
➢ Shows that SPACK package can randomly pick up system libraries
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https://github.com/spack/spack/pull/28109


Some other random things
❖ SPACK concretize your whole env even if you want to build single package

➢ Copies all the patches of all the versions/variants for all packages in your env
➢ Might be very annoying for developers

❖ SPACK compiles/generates byte code for all the packages known to it (6.7K)
➢ So you have to maintain all packages even if you do not use those

❖ No easy way to search binary caches for installation
➢ We use tricks like copying a pre-concretized lock file (from the build step) to tell SPACK what to 

install
❖ We still have no experience with multiple parallel builds building/uploading 

same package
❖ Relatively large distribution size: +15%  (45G vs 39G)
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> ls var/spack/repos/builtin/packages/*/__pycache__/package.cpython-36.pyc |wc -l
   6753



Summary
❖ SPACK is nice tool for small env with relatively small deps and life cycles

➢ CMS Software stack life cycle is even longer than EL distros

❖ Along with all the slowness/issues (as compare to existing CMS Packaging 
system), it also comes with high maintenance overhead

❖ Package recipes are not written with much care and will break any large 
software stack sooner or later
➢ Specially for SW stack with multiple ML tools which maintain/build their own deps

❖ I am sure I might have missed many nice features of SPACK but things 
which matters most for CMS software stack do not look good

❖ I am afraid it is not the right tool for packaging large software stacks
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Backup



CMSSW: External Package Dependency

Python_Tools
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Represents a 
group node e.g 
all python 
based packages 
in single node 

https://muzaffar.web.cern.ch/cmssw.jpeg


CMS Software stack: Python Packages Dependency
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25 levels deep

https://muzaffar.web.cern.ch/python_tools.jpeg


SCRAM
❖ CMS Software Configuration, Release and Management tool

➢ Build System
➢ Software Development and runtime environment setup

❖ Since 1998, this is the only tool CMS has used to build offline software
➢ Initially written in PERL but in 2020/21 it was rewritten in PYTHON

■ Reduced code base: V2: 8.5K Perl, V3: 3.5K Python

❖ Backward compatibility within a SCRAM major version
➢ SCRAM V2 latest version can still build and set env for 12 year old CMSSW_3_9

❖ It has been very stable and has not shown any sign of aging
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https://github.com/cms-sw/SCRAM


CMSSW-Config
❖ Build rules for CMS offline software

➢ gmake based rules
■ 3.5K lines of GMAKE
■ 3.3K of Python : To convert XML based rules in to gmake targets

➢ SCRAM uses these rules to build CMSSW/FWLite/CORAL

❖ Provides hooks for SCRAM to dynamically set build/run time environment
➢ CUDA Runtime
➢ Micro-architectures
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https://github.com/cms-sw/cmssw-config


CMSSW-Config…
❖ CMSSW build rules are result of many years of work
❖ Build rules has been profiled multiple time to maximize the utilization of 

build and development resources
➢ We avoid long PATH, LD_LIBRARY_PATH, PYTHONPATH, CMSSW_SEARCH_PATH

■ libs, bins, data and python modules under single directory
● Just like view concept of LCG/Spack but CMS has been using it since 2008

➢ Running of all executables with full paths to avoid searching those in PATH
➢ Avoid duplication of  -Iincdir, -Llibdir to improve the compile/link time
➢ Proper (transitive) dependency handling to avoid passing of extra -Idir
➢ Compact GMake rules in few files instead of many small ones

■ Smaller files (e.g. one per binary/library) takes a lot of time to load
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PKGTOOLS
❖ CMS Offline Packaging tool

➢ Build packages and their dependencies from sources
➢ Written in PYTHON and uses Redhat Package Manager (RPM) as backend for building 

and installing packages
➢ Nearly 200K binary packages in the repository for various OS, archs and compilers

■ 6.7K CMSSW releases

❖ Very stable and requires low maintenance
➢ 5K lines of PYTHON code
➢ Single version to build full software stack of all CMSSW release cycles
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https://github.com/cms-sw/pkgtools


CMSPKG
❖ Package distribution and installation tool. PKGTOOLS uses it to

➢ download and install prebuilt packages
➢ Upload newly build packages

❖ It was developed to replace apt/yum usage
❖ Uses RPM dependency information instead 

of maintaining its own dependency DB
❖ <15m to install full pre-build CMS-SW stack 
❖ One version to install any package

➢ Used by all CMSSW release cycles/archs
➢ 2K Python, 2K bash lines of code (bootstrap 

script)
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https://github.com/cms-sw/cmspkg


CMSDIST
❖ Collection of build recipes

➢ RPM Spec files to provide the actual build/install instructions and packages requirements
■ Uses BASH for build recipes

Setup sources

Build

Install

❖ 650 package recipes
➢ 320 Python packages
➢ 90 data packages

❖ One version/configuration per package
➢ Multiple version supported via separate SPECs

❖ 20K lines of build recipes
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https://github.com/cms-sw/cmsdist


CMSDIST…
❖ Supports automatic generation of packages

➢ Pip based packages 
➢ CMSSW Data packages
➢ Multi-Vectorization packages zlib, zlib_haswell, zlib_skylake-avx512 etc.

❖ Non-root installation by creating a separate RPM DB
➢ Well controlled system package dependency
➢ RPM post build dependency checks: To make sure we do not use anything outside our 

control
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Pip based Python packages
- requirements.txt
- dependabot notification about 

Security issues

CM
SSW
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h5py



Compiler Wrappers: Injecting -I/-L CMSSW sources
Alignment/CocoaDaq/src/CocoaDaqRootEvent.cc:1 include (indirectly 
include few root headers)
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❖ DQM/Physics/src/plugins.cc: 1055 includes
230K IO errors

108K IO errors

GCC

GCC

SPACK
GCC

SPACK
GCC

5.5K IO errors

42K IO errors5 to
 20 ti

m
es m

ore
 IO

 erro
rs



rpath/runpath Issues
❖ RPATH/RUNPATH are great and works for most of the cases

➢ No need to set global LD_LIBRARY_PATH which can break other tools
■ CMSSW env breaks CMS Computing env

❖ Does not work for packages with stubs libraries which are suppose to 
be loaded from correct path at runtime
➢ cuda 
➢ dpm
➢ tkonlinesw

❖ Can not use RPATH if your software stack has packages with stubs 
libs
➢ RUNPATH works but then you need to set LD_LIBRARY_PATH to load the correct library 

at runtime
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Life without LD_LIBRARY_PATH
❖ No CMSSW Patch release

➢ CMSSW libraries loaded from full release will load all shared libraries from full release 
even if those are available in patch release

❖ No CMSSW developer area
➢ Same issue as patch release

❖ No usage of packages with stubs libraries
➢ cuda

❖ No multi micro-architectures builds
➢ Which needs to load different vectorization library at runtime

❖ Lose the ability to build an external and test in developer area
➢ Developers of externals e.g. root/geant4 etc. use their build system to build and use it 

directly in cmssw by updating the tool file 
❖ ROOT dictionaries loading does not work
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