Evaluating SPACK
for
CMS offline Software

SFT Group Meeting
13th Mar 2023

CMS Software Stack

CMS Offline Software Stack

% CMSSW: Software and services needed by the simulation, calibration and

alignment, and reconstruction
> 5.5M code lines:
m 66% C/C++, 27% Python, 5% fortran and rest are build-rules/data files
> 17 active release cycles: 5.3, 8.0, 9.4 up to 13.0/13.1
m 13.1.X development release cycle has 15 flavors
e ROOT, GEANT, CLANG, LTO, Multi-Vectorization, ASAN, UBSAN etc.
e Build for multiple OS/Arch/Compilers (cc7/el8/el9, x86_64/arm/power...)
> Build production: 2.5K shared libs/plugins, 1K binaries

% 650 external tools needed to build/run

100
- I| ||| |I|||||||||III |II|III hilhiin
)] s

02/06 02/27 03/20 04/10 05/01 05/22 06/12 07/03 07/24 08/14 09/04 09/25 10/16 11/06 11/27 12/18 01/08 01729

3
s

https://github.com/cms-sw/cmssw

CMS Offline Software Build/Packaging System

% CMS Offline Software Build/Packaging system consists of various

components
> SCRAM: Software Configuration, Release and Management tool

More
> CMSSW-Config: Build rules based on gmake details in
> PKGTOOLS: Packaging system based on Redhat Package Manager (RPM) backup
> CMSPKG: Software distribution and Installation/Deletion tool slides
> CMSDIST: The build recipes for building the package

% All of these are though customized for CMS offline SW but can be used by

RPN external 124 1.9.2

Oth e r p rOj e CtS ource: https://github.com/%{n}/%{n}/archive/vi&{realversion}.tar.gz

> LCG Projects were using SCRAM in past to build POOL/CORAL. & - sp-stesuersion
> CMS still builds copy of CORAL using SCRAM il

make %{makeprocesses}

Sinstall
make PREFIX=%{1} install

https://github.com/cms-sw/SCRAM
https://github.com/cms-sw/cmssw-config
https://github.com/cms-sw/pkgtools
https://github.com/cms-sw/cmspkg
https://github.com/cms-sw/cmsdist

CMS Package System: Summary

% All tools used for building/distribution/installation are independent
of CMSSW releases/OS/archs/compilers

> Except for CMSDIST where though most of build recipes are shared between
releases/OS/archs/compilers but we have separate git branches for each release/compiler

> Build recipes do not depend of packaging/distribution tools so can be easily backported
to older release cycles

< All tools are very stable and require low maintenance
> Few commits per year (mostly for additional features)
> Over all 40K lines of code to maintain
m 20K lines are stable and independent of CMSSW releases/OS/archs/compilers
m 20K lines of build recipes gets most of the changes and mostly for
development release cycles

SPACK
Let’s dive into SPACK world

SPACK

% SPACK flexible package manager for HPC software

> Alot of development for/from HEP experiments in last 6 years
> Supports multiple version and configurations of software

> Single package file to have all supported versions, configurations and variants of the
software

% Just not a package manager but supports software distribution and
installation
> Binary relocatable packages

% PKGTOOLS, CMSPKG and CMSDIST all in one

> Also covers part of SCRAM e.g package env setup (spack load/unload)
> Interferes with build rules too via its compiler wrappers

Why we looked in to SPACK

\/
0‘0

/7
X4

L

K/
£ %4

@, KO
L X4 0,0

Large community specially after 2016 when HEP exp start looking in to it
HSF recommends SPACK for HEP community

> LCG/SPI team looking in to it since 2020 5

+6.5K built-in package recipes

Out of the box RPATH/RUNPATH builds =~

> No LD_LIBRARY_PATH required at runtime = Az‘:‘ml W5 W6 AW A A A W An M
. . class Cnmem(CMakePackage):

Python based SImple paCkage recipes """CNMem mempool for CUDA devices"""

Ivan Razumov, jOIﬂEd CMSin May 2021 homepage = “https://github.com/NVIDIA/cnmen"

> 1.5y of experience building LCG packages w/ SPACK gut = “https://github. con/NVIDIA/cnmem. g1t”

> Avery active contributor of SPACK (>700 PRs)

version("git", branch="master")

depends_on("cmake@2.8.8:", type="build")

Building CMS Software stack using SPACK

% After 22 months long roller coaster ride, Ivan finally had managed to build

CMSSW externals software stack
> Had to rewrite package recipes multiple time due to fast moving SPACK development
m Vv0.16,v0.17, v0.18 :
> Final implementation uses inheritance\from spack mport *
m SPACKVv0.19.0 from spack.pkg.butltin.vdt mport Vdt as BuiltinVdt
% CMS SPACK env contains 650 packages class Vdt(BuiltinVdt):
> 350 package recipes from upstream SPACK doc = BuilltwVdt. doc
> 300 in cms-spack repository ke Aok -
m 100 CMS specific (including +80 cms-data) keep-arChwes = True

m 140 use built-in package with CMS specific patches/sources/changes
m 60 recipes are rewritten (mostly copied and changed according to CMS needs)

SPACK

Few major design/scalability issues

10

Package recipes: are they really simple... ?

% Yes they are simple/readable for first version, single configuration
% SPACK package recipes contain all

versions/configurations/variants/build systems in single file
> Qver the time these recipes become a nightmare to manage specially when you had to
backport changes to few years old software stack 1083 gce 127 autotools
m LZ4: 10to 50+ lines 1102 openfoam 134 tkonlinesw
m ROOT: 60 to 650+ lines 1103 py-tensorflow 148 alpgen
m Python: 25 to 1.5K lines 1108 opencv 148 rpm
m Boost: 60 to 740 lines 1185 mfem 192 root
> Package recipe grows only (unless someone does a cleanup) 1309 openmpi 210 tensorflow
1

579 python 284 gce
spack cmsdist

11

Package recipe: LZ4 package

class Lz4(MakefilePackage):
"""LZ4 is lossless compression algorithm, providing compression speed
at 400 MB/s per core, scalable with multi-cores CPU. It also features
an extremely fast decoder, with speed in multiple GB/s per core,

typically reaching RAM speed limits on multi-core systems."""

homepage = "https://1z4.github.io/1z4/"
url = "https://github.com/1z4/1z4/archive/v1.9.2.tar.gz"

version("1.9.4", sha256="0b0e3aad7c8c063ddf40b082bdf7e37al562bdad@adff5272957f3e987e0e54b™)
version("1.9.3", sha256="030644df4611007ff7dc962d981f390361e6c97a34e5cbc393ddfbe@19ffe2cl™)
version("1.9.2", sha256="658ba6191fa44c92280d4aa2c271b0f4fbc@e34d249578dd@5e50e76d@e5efcc™)
version("1.9.0", sha256="f8b6d5662fa534bd61227d313535721ae41a68c9d84058b7b7d86e143572dcfb"™)
version("1.8.3", sha256="33af5936ac06536805f9745e0b6d61da606alf8b4cc5c0@4dd3cbaca3bobafc43™)
version("1.8.1.2", sha256="12f3a%e776a923275b2dc78ae138b4967ad6280863b77ff733028ce89b8123f9")
version("1.7.5", sha256="0190cacd63022ccb86f44fa5041dc6c3804407ad61550ca21c382827319e7e7e")
version("1.3.1", sha256="9d4d00614d6b9dec3114b33d1224b6262b99ace24434c53487a0c8fdobl8cfed"”)

depends_on("valgrind”, type="test")

GARIEREC ##4 RPN external 1z4 1.9.2
"libs", Source: https://github.com/%{n}/%{n}/archive/v%{realversion}.tar.gz

default="shar

values=("shar

multi=True, %prep

description="%setup -n %{n}-%{realversion
P p -n %{n}-%{ } é

def url_for_versi%build
url = "https: paka %{makeprocesseS} c‘
if version >
return "g%1nstall
e -MoKE PREFDIA{1) install

return

if sys.platform != "darwin":
Ll‘ pac‘katemake("MOREFLAGS:-lrt", parallel=par) # fixes make error on Cent0S6
L] L]
With anly one variant,
make(parallel=par)

def build(self, spec, prefix):
par = True
if spec.compiler.name == "nvhpc":
relocation error when building shared and dynamic libs in
parallel

par = False

def install(self, spec, prefix):
make (
"install”,
"PREFIX={0@}".format(prefix),
"BUILD_SHARED={@}".format("yes" if "libs=shared" in self.spec else
"BUILD_STATIC={0}".format("yes" if "libs=static" in self.spec else "no"),

no™),

from spack import *
def patch(seiclass Lzd(Package):
Remove homepage = "http://cyand973.gjthub. 04 ae
5 Sf;’ url = "https://gith* y 1z4/archive/r131.tar.gz
11T “‘

filty

ci100 version('131', '42b0 %4 9d3fb33bd5¢560de9")

A\
@run_after(" def install(sel%be?, prefix):
def darwin_f: make() \,

AF sys-g make(' install',

fix_a

'PREFIX={0}'.format(prefix))

12

Compiler Wrappers

K/
L X4

SPACK provide compiler wrappers (800 lines of bash script) which are added in
to PATH before the build process

Compiler wrappers are the heart and soul of SPACK and are the magic behind
> Injecting compilation flags
m RPATH/RUNPATH
m -Idirs for dependencies during building phase
m -Ldirs for dependencies during link phase
m Common flags: enabling debug mode, optimization etc.
> Achieving the simple package recipes
m Many packages recipes have misused this feature and do not pass the required
parameters to build system (autoconf/make/cmake)

Disabling include/library directories injection shows that many packages
either failed to build or pick up system packages
> My test only checked single version/configuration/variant

13

Compiler Wrappers: Injection of includes paths

% Build System generated command

> compiler options -fl|isystemHinclude dirs|system dirs} options

X/

% SPACK’s compiler wrapper generated command Extra include
_ ' " " " " " paths of package
> compiler options -l{include dirs} -isystem{include dirs} \ /

dependencies

-I{SPACK_INCLUDE_DIRS}|-isystem{SPACK_INCLUDE_DIRS} \

-l{system dirs} -isystem{system dirs} options

% Overall 25% increase in cmssw build time (2h25 vs 3h15)
> 16 Cores VM; building everything on SSD storage

14

Compiler Wrappers: Injecting -1/-L...

% CMSSW depends on large number of external packages
> 200 of these have include directories
> 325 have lib/lib64 directories
% Injecting over 200 -/dirs means compiler has to go through all these to find

system/compiler headers
> Alot of IO operations (specially if you are taking most of the externals from CVMFS or
shared file system)
Strace: compiling a source file with just two includes i.e iostream/string

Stme seconds usecs/call calls errors syscall %tue seconds usecs/call calls errors syscall
e R LT T Ty PRy e
QO 0 o o o | roractual CMSSW Lk oo s SOKjO erors,

sources strace
) MBlgee 5 W [HEH || reported 100k-230k | X8 (ETSSPACKT 35888 35602 opnat

5.5 0.014597 L 10 | 1034 openat 10 errors 6.66 0.009%8 eCC 7 9! 586 Lstat
1,84 0.004843 1614 3 eXecve (see backup slides) L4 0.011998 2989 ! EXecve

15

Compiler Wrappers: Injecting -ldirs/-Ldirs...

< Extra -Idirs can override some system/compiler header
> CMSSW failed to build as one of external package provide a conflicting system header
m There could be more externals doing this
> Multiple packages providing the same header file can cause build/runtime issues

< Adding -Idirs/-Ldirs does not guarantee that you pick up externals
from SPACK build

> Many packages now a days bundle/download/build packages internally
m Tensorflow does it for tons of externals
m ONNXtime does the same
m Root also has many internal built-in packages

> You either need to patch or configure the package to use your external or make sure that

external package versions are identical (with same patches applied)

16

Compiler Wrappers: Debugging long commands

CMSSW compile/link command length comparison

gcc / spack Compile Link

Smallest 670/ 41K 2K/ 165K
+40K +160K;

Longest 12K / 53K 44K | 207K

<% Long compile/link commands

> Package build logs only contain compile/link commands generated by build system
m Extra flags/optins added by spack are not visible

% Really hard for developers of the package to debug the issue

> Developers use their build system to build a package.
m They are only interested to know which configure and build options were used

17

SPACK code base

% Very active projects
> Gets many updates/fixes every week (avg 100
commits/week)
% 345K lines of python code
> 135K in core spack lib
SLOC Directory SLOC-by-Language (Sorted)
209579 var python=208372,...

138267 lib python=136512....
2920 share sh=2561 csh=225 tcl=69 python=65

02/06 02/27 03/20 04/10 05/01 0522 06/12 07/03 07/24 08/14 09/04 0925 10/16 11/06 11/27 12/18 01/08 01/29

%1 base:v0.16.0 (_ compare: v0.17.0 ¥ 11/20 - 11/21
190K lines changed

-0- Commits 5,000+ Files changed 5,000+

| [#] Showing 7,264 changed files with 147,447 additions and 44,184 deletions. I

T:l base: v0.17.0 ¥ (_ compare: v0.18.0 ¥ 1 1 /21 - 05/22
150K lines changed
-0- Commits 2,697 Files changed 5,000+

I HShowing 7,888 changed files with 113,227 additions and 42,660 deletions.l

%1 base:v0.180 7 <_ compare: v0.19.0 ¥ 05/22 - 11/22
450K lines changed

-o- Commi@w dﬁeletﬁafﬂ’rmtti ng

I Showinﬁ 7,878 chanﬁed files with 254,457 additions and 190,618 deletions.l

base: v0.19.0 ¥ (_ compare: develop ¥ 1 1 /22 - 02/23
125K lines changed
-0~ Commits 1,047 Files changed 5,000+

Showing 8,339 changed files with 59,978 additions and 65,723 deletions.

SPACK in large scale projects

% SPACK s moving target, so one can not use head of it
> Projects needs to start with a tagged version and then
> Rest of the life of your release you have to maintain that SPACK code base

A Patches/version updates/new externals from 14.0
: upstream SpGCk CMS-SPACK pre1 pre2 preN 14.0.0 14.0.1
. Changes backported to cms-spack forolder [+ . [A -PA - "A.- YA ¢ et
Y CMSSW release cycles 131 elY.b
CMS-SPACK pre1 pre2 preN Ny I
13.0 ‘ ‘ ‘E..:..E..:..E-f..ilf ’
CMS-SPACK . st ad . 4 S EEEEEE
pret pre2 preN R RN ZRAE ZNEAE 20NN >
1 X.1
e 0 g

VvN(0.19.0) VN+X VN+y
Spack Releases

Software stack install time

<% cmspkg takes 15mins to deploy full CMSSW software stack
> CMSSW + dependencies (including bootstrap, GCC)

% SPACK takes 2hours to install CMS software stack (without GCC)

> Installs one package at a time
> For simple packages (with nothing to relocate) it takes (on average) 5-6s to
download/install
m For 650 packages it is already 1 hour
> For complex packages (with a lot of libraries/binaries) the install time is very high
m CMSSW with over 4K binary products took 30 mins to install
> It can easily add, at least, additional couple of hours for Pull Request testing

20

SPACK DB

X/
L X4

9, KO
L X4 0,0

*
<

Y
L X4

SPACK maintains a json file as DB to keep track of installed packages
> Single package insertion at a time

DB Insert time linearly increases based on DB size
CMS Software for unique combination of OS/arch/Compiler goes under

single install path t emscommon || SPACK DB: Single package addtion time

> slc7_amd64_gcc900: 8K packages in 2.5y 1SCRAMV2 200~
> el8_amd64_gcc11: 2.1K packages in 9m 1 emssw-wm-tools gggg T Simple JSON
Install time will only increase with time 15 python_tools sl read/insertiwfite

1000 +
500 +

What if SPACK decided to change DB structure 16ddhep

Time(ms)

FA _ 19 coral
> Sqlite implementation #34655 1922::|-t00|-conf

. . N MO S R)
> We might not be able to use two different 24 cmssw-tool-conf & g@ \Q\\ @" @Q\‘* & «\gﬁ’ &é’ g\@“ \&ﬂ?

SPACK versions to install under same path 25 cmssw #Packages/DB Size

21

https://github.com/spack/spack/pull/34655

SPACK

Some minor issues which can be fixed in future releases

22

CMS Software stack: Build time w/o0 GCC and CMSSW

% Test were done on 16 Cores VM with 120GB memory with SSD
< SPACK builds single package at a time: Larger the machine bigger the

waste
> Parallel build support might improve but | was not able to tests it

23

Software stack install time: Parallel install

% SPACK parallel build/install fix applied
> Updated SPACK DB lock wait time to 60s (instead of 3s)
% SPACK install with -j16 failed
> For some unknown reason it start rebuilding packages
% SPACK install with -j2 worked but took more time than serial mode

> 2h40m to install cmssw + dependencies (without GCC)
m 30mins to install CMSSW alone
m Might take more time if cmssw was built with runpath

>|dd CMSSW_13 1 X 2023-02-13-2300/lib/el8_amd64_gcc11/libFWCoreFramework.so
i W oreUtlhtles so => not found

ata/cmsbld/spk2/|nstalI/el8 amd64_gcc11/ro

Environment setup

% SPACK provides various ways to use an installed package
> spack load/unload
> spack environment

m Bundle many related packages and activate all of them at once
> spack environment modules

m SPACK generates module files which one can use with module load/purge
% All of these failed for large software stack

> For large software stacks, the generated env is so large that it exceeds the max
argument size (2MB)
Setting only the Python tools env (330 packages): slow as compared to CMSDIST: <1s vs >40s
> which python3
lusr/bin/python3
> spack load python-tools@3.0
> which python3
bash: /usr/bin/which: Argument list too long

> which python3
lusr/bin/python3
> module load python-tools-3.0-gcc-11.2.1-ovyelip
> which python3

bash: /usr/bin/which: Argument list too long -

Package dependency on all Build systems

% Every SPACK package loads all the build system known to SPACK

> Why we should care about it?
m We have to either fix or remove the Build System if it fails due to python version
updates within EL distros
e EL8 has python 3.6, 3.8 and 3.9
e EL9 has python 3.9 and 3.10

spack.util.package is a set of useful build tools and directives for packages.
Everything in this module is automatically imported into Spack package files.

nm

from spack.build_systems.perl import PerlPackage

from spack.build_systems.python import PythonExtension, PythonPackage
from spack.build_systems.gmake import QMakePackage

from spack.build_systems.r import RPackage

from spack.build_systems.racket import RacketPackage

from spack.build_systems.rocm import ROCmPackage

from spack.build_systems.ruby import RubyPackage

26

Missing system dependency checks
% PKGTOOLS/CMSDIST uses RPM to build CMS Offline packages

> We maintain our own RPM DB to control what our packages can pick up from system
> RPM post build checks make sure that packages we build do not accidentally depend on

any thing which is not in our RPM DB
> This helped use control our system level dependencies and allowed CMS Offline SW to

work (build/run) with in a major EL release cycle
% https://github.com/spack/spack/pull/28109 provides a partial

implementation
> Opened since Dec 2021
> Uses Idd and hardcoded list of system libs
m This functionality is not any way near to what rpmdeps provides
> Shows that SPACK package can randomly pick up system libraries

27

https://github.com/spack/spack/pull/28109

Some other random things

o
%

SPACK concretize your whole env even if you want to build single package
> Copies all the patches of all the versions/variants for all packages in your env
> Might be very annoying for developers

SPACK compiles/generates byte code for all the packages known to it (6.7K)

> So you have to maintain all packages even if you do not use those

> Is var/spack/repos/builtin/packages/*/ _pycache__/package.cpython-36.pyc |wc -/
6753

No easy way to search binary caches for installation

> We use tricks like copying a pre-concretized lock file (from the build step) to tell SPACK what to
install

We still have no experience with multiple parallel builds building/uploading
same package
Relatively large distribution size: +15% (45G vs 39G)

28

Summary

X/
L X4

X/
L X4

X/
L X4

SPACK is nice tool for small env with relatively small deps and life cycles
> CMS Software stack life cycle is even longer than EL distros

Along with all the slowness/issues (as compare to existing CMS Packaging
system), it also comes with high maintenance overhead

Package recipes are not written with much care and will break any large
software stack sooner or later

> Specially for SW stack with multiple ML tools which maintain/build their own deps

| am sure | might have missed many nice features of SPACK but things
which matters most for CMS software stack do not look good

| am afraid it is not the right tool for packaging large software stacks

29

Backup

CMSSW: External Package Dependen

Il

e /
Python_Tool

~ Represents
 group node e.g
all python
based packages
in single e

https://muzaffar.web.cern.ch/cmssw.jpeg

CMS Software stack: Python Packages Dependeng

s -'--?. o S P : o rﬁFv pg‘a

25 Ievels deep. : ' g

L «n .h.ﬂi’,ﬁf'i'f}”.“ﬁ

IU! o)

32

https://muzaffar.web.cern.ch/python_tools.jpeg

SCRAM

% CMS Software Configuration, Release and Management tool
> Build System
> Software Development and runtime environment setup
% Since 1998, this is the only tool CMS has used to build offline software
> Initially written in PERL but in 2020/21 it was rewritten in PYTHON
m Reduced code base: V2: 8.5K Perl, V3: 3.5K Python
< Backward compatibility within a SCRAM major version
> SCRAM V2 latest version can still build and set env for 12 year old CMSSW_3_9

% It has been very stable and has not shown any sign of aging

6

4

2
| II-II I 1 . n

02/06 02/27 03/20 04/10 05/01 05/22 06/12 07/03 07/24 08/14 09/04 09/25 10/16 11/06 11/27 12/18 01/08 01729

33

https://github.com/cms-sw/SCRAM

<library name="L1TriggerL1THGCalPlugins" file="*.cc">
<use name="L1Trigger/L1THGCal"/>

CMSSW-Config
<use name="Geometry/Records"/>

% Build rules for CMS offline software .. o srucmerte/s
> gmake based rules . . 71_
m 3.5Klines of GMAKE
m 3.3Kof Python : To convert XML based rules in to gmake targets
> SCRAM uses these rules to build CMSSW/FWLite/CORAL
% Provides hooks for SCRAM to dynamically set build/run time environment

> CUDA Runtime
> Micro-architectures

5 I I I
. e -1 - ol

02/06 02/27 03/20 04/10 05/01 05/22 06/12 07/03 07/24 08/14 09/04 09/25 10/16 11/06 11/27 12/18 01/08 01729

34
s

https://github.com/cms-sw/cmssw-config

CMSSW-Config...

% CMSSW build rules are result of many years of work
% Build rules has been profiled multiple time to maximize the utilization of

build and development resources
> We avoid long PATH, LD_LIBRARY_PATH, PYTHONPATH, CMSSW_SEARCH_PATH

m libs, bins, data and python modules under single directory

e Just like view concept of LCG/Spack but CMS has been using it since 2008

Running of all executables with full paths to avoid searching those in PATH
Avoid duplication of -lincdir, -Llibdir to improve the compile/link time
Proper (transitive) dependency handling to avoid passing of extra -/dir
Compact GMake rules in few files instead of many small ones

m Smaller files (e.g. one per binary/library) takes a lot of time to load

YVVY

35

PKGTOOLS

% CMS Offline Packaging tool

> Build packages and their dependencies from sources
> Written in PYTHON and uses Redhat Package Manager (RPM) as backend for building
and installing packages
> Nearly 200K binary packages in the repository for various OS, archs and compilers
m 6.7K CMSSW releases
% Very stable and requires low maintenance

> 5Klines of PYTHON code
> Single version to build full software stack of all CMSSW release cycles

4

3

2

|] 11

W HEl B il

02/06 02/27 03/20 04/10 05/01 05/22 06/12 07/03 07/24 08/14 09/04 09/25 10/16 11/06 1127, 12/18 01/08 01/29

36

https://github.com/cms-sw/pkgtools

CMSPKG

< Package distribution and installation tool. PKGTOOLS uses it to

> download and install prebuilt packages
> Upload newly build packages

% It was developed to replace apt/yum usage | et -y instai package

% Uses RPM dependency information instead
of maintaining its own dependency DB

APT

apt-get update

apt-get reinstall package

apt-get --reinstall

% <15m to install full pre-build CMS-SW stack jsstau packaee

% One version to install any package
> Used by all CMSSW release cycles/archs
> 2K Python, 2K bash lines of code (bootstrap

SGa pt)
10
5
o [1=
02/06 02/27 03/20 04/10 05/01 05/22 06/12 07/03 07/24 08/14 09/04

apt-get remove package
apt-get clean

apt-get upgrade

CMSPKG
cmspkg -a arch update

cmspkg -a arch -y install
package

cmspkg -a arch reinstall

package

cmspkg -a arch --reinstall

install package
cmspkg -a arch remove package
cmspkg -a arch clean

cmspkg -a arch upgrade

09/25 10/16 11/06

11/27

12/18 01/08 01729

https://github.com/cms-sw/cmspkg

CMSDIST

% Collection of build recipes

> RPM Spec files to provide the actual build/install instructions and packages requirements
m Uses BASH for build recipes

RPM external 1z4 1.9.2
Source: https://github.com/%{n}/%{n}/archive/v%{realversion}.tar.gz

% 650 package recipes
> 320 Python packages
> 90 data packages "

< One version/configuration per package e smkeprocesses) Build
> Multiple version supported via separate SPECs ~ sustall

. , , nake PREFIX={i} install Install
% 20K lines of build recipes

sprep

%setup -n %{n}-%{realversion} Setup sources

30

20

0llllIIlIIIIIIIIll-IIlII. _-II-III--I.I-III..I- IIII

02/06 02/27 03/20 04/10 05/01 05/22 06/12 07/03 07/24 08/14 09/04 09/25 10/16 11/06 11/27 12/18 01/08 01729

1

o

38
s

https://github.com/cms-sw/cmsdist

CMSDIST...

< Supports automatic generation of packages

>
>
>

[default]
RecoTracker-Mkpi®=Voo-12-00
RecoTauTa xi}a¥gingFiles=V00-67-00
Pip based packages Physics&c‘léﬁ?gnoAODw@l-63-06
CMSSW Data packages 9 Ca1ibTracQ'8r~-SiStripDcs=v01-61-00
Multi-Vectorization packages zlib, zlib_haswell, zlib_skylake-avx512 etc.

o N O U

% Non-root installation by creating a separate RPM DB

>
>

17
18
19
20
21

Well controlled system package dependency
RPM post build dependency checks: To make sure we do not use anything outside our

control Pip based Python packages
aiosignal==1.2.8 requirements.txt , h5ﬂy ,
anyio==3.6.1 - dependabot notificAtiiaBBaenny it py3-six

appdirs==1.4.4 SECUrItYISSUES , poryiac: py3.cython py3-pkgconfig openmpi

argon2-cffi==21.3.0 : ; ; 5
argon2-cfFi-bindings==21.2.0 3 ’define PipPreBuild export HDFS DIR=${HDF5 ROOT} CC="mpicc

39

Compiler Wrappers: Injecting -I/-L CMSSW sources

AI|gnment/CocoaDaq/src/CocoaDaqR@?Event cc:1 include (indirectly
| include few root headers) (—
%twe seconds usecs/call calls errors syscall \0 %time seconds usecs/call calls errors syscall

""""""""""""""""""" 55K 10 errors (@
70.91 0.430472 143499 3 Lvaltd @ 63.47 6.561829 2187276 3 1 vattd

16.83 0.102183 gcc 5 18638 1491 Tstags .28 3.337334 SPACK 4 682340 45 lstat
4219 oot 3.6 0.375959 GCC 6 55750 | 55309 openat

1.40 0.044904 9 4652
L DQM/Physms/src/pI s.cc: 1055 includes
230K 10 errors

tine seconds usecs/call c,a}l'bq'errors syscall %tine seconds usecs/call calls errors syscall
T R R

85.45 5.872444 2936222 6’ iatd 66.03 14770776 7385368) vaitd
6.97 0.4718942 gcc 1l 40275 37292 openat 28.85 6.455500 SPACK 5 1266902 07661 lotal
533 0.36639% 6 57683 | 4536 lstat | 0.4 0.988656 GCC 7 13338 | 130391 openat

rpath/runpath Issues

< RPATH/RUNPATH are great and works for most of the cases
> No need to set global LD_LIBRARY_PATH which can break other tools
m CMSSW env breaks CMS Computing env
< Does not work for packages with stubs libraries which are suppose to

be loaded from correct path at runtime

> cuda

> dpm

> tkonlinesw

< Can not use RPATH if your software stack has packages with stubs

libs

> RUNPATH works but then you need to set LD_LIBRARY_PATH to load the correct library
at runtime

41

Life without LD LIBRARY PATH

&

3 3 3
QP S S

3
<3

No CMSSW Patch release
> CMSSW libraries loaded from full release will load all shared libraries from full release
even if those are available in patch release

No CMSSW developer area

> Same issue as patch release

No usage of packages with stubs libraries
> cuda

No multi micro-architectures builds
> Which needs to load different vectorization library at runtime

Lose the ability to build an external and test in developer area
> Developers of externals e.g. root/geant4 etc. use their build system to build and use it
directly in cmssw by updating the tool file

ROOT dictionaries loading does not work

42

